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Summary
In previous nuclear genomic association studies, Random 
Forests (RF), one of several up-to-date machine learning 
methods, has been used successfully to generate 
evidence of association of genetic polymorphisms with 
diseases or other phenotypes. Compared with traditional 
statistical analytic methods, such as chi-square tests or 
logistic regression models, the RF method has advantages 
in handling large numbers of predictor variables and 
examining gene-gene interactions without a specific 
model. Here, we applied the RF method to find the association 
between mitochondrial single nucleotide polymorphisms 
(mtSNPs) and diabetes risk. The results from a chi-square 
test validated the usage of RF for association studies using 
mtDNA. Indexes of important variables such as the Gini 
index and mean decrease in accuracy index performed 
well compared with chi-square tests in favor of finding 
mtSNPs associated with a real disease example, type 2 
diabetes.
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Introduction
Mitochondria are double-membrane organelles present in 
most cells, and play a central role in energy transduction 
processes of eukaryotic cells including ion homeostasis, 
intermediary metabolism, and apoptosis (Burger et al., 
2003). Mitochondria have their own genetic system called 
mitochondrial DNA (mtDNA); meanwhile, other extranuclear 
organelles (nuclear genome) in the cell do not have their 
own genome. The architecture of mtDNA varies depending 
on the organism, especially human mtDNA, which has a 
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circular shape of 16.6 kb. Mitochondrial DNA consists of 
13 protein-coding, 2 rRNA, and 22 tRNA genes that are 
involved in five processes: respiration and oxidative 
phosphorylation, translation, transcription, RNA maturation, 
and protein import (Burger et al., 2003, Park and Lee, 
2004). There are particular features of mitochondrial DNA 
that are different from nuclear DNA, including haploid 
number, high copy number, apparent lack of recombination, 
high substitution rate, and maternal mode of inheritance 
(Ingman et al., 2000).

Due to the aforementioned features of mtDNA, mtDNA 
has been used in evolutionary studies (Ladoukakis & 
Eyre-Walker, 2004) and in association studies of complex 
diseases such as MELAS syndrome (Mukae et al., 2003; 
Niemi et al., 2003; Nigou et al., 1998), non-insulin-dependent 
diabetes mellitus (NIDDM , type 2) (Guo et al., 2005; Kahn 
et al., 1996; Matsunaga et al., 2001; Ohkubo et al., 2001; 
Poulton et al., 2002; Suzuki, 2004; Suzuki et al., 2003), and 
aging (Kato et al., 2002). Association studies of diabetes 
and mitochondrial DNA variants (mtSNPs) have been 
widely performed since mitochondria have a central role 
in ATP production, which is related to insulin production 
and release, and because type 2 diabetes has a high 
burden of disease (Cho et al., 2004; Guo et al., 2005; 
Ohkubo et al., 2001; Poulton et al., 2002; Rosenbloom et al., 
1999; Suzuki, 2004). In general, most association studies 
have been conducted using chi-square tests or logistic 
regression models in case-control designs.

However, most common complex human diseases 
have been identified such that multilocus genes under 
complicated biological mechanisms as well as gene-gene 
or gene-environment interactions are the causative 
factors rather than a single gene (Bureau et al., 2005). 
Traditional association study methods, such as chi-square 
tests and logistic regression methods in the context of 
parametric approaches, need a prespecified model using 
a relatively small number of predictors. But, they are 
confronted by limitations to deal with detecting such complex 
diseases using a large number of predictors efficiently. 
Because of this, in previous genomic and proteomics 
studies with nuclear DNA, one of several machine learning 
methods, Random Forests (RF), in the context of the 
nonparametric approach has been used successfully to 
generate evidence of association of genetic polymorphisms 
with diseases or other phenotypes, especially in the 
presence of gene-gene interactions with a large number 
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of predictor variables (Bureau et al., 2005; Bureau et al., 
2003; Diaz-Uriarte & Alvarez de Andres, 2006; McKinney 
et al., 2006; Shi et al., 2005). 

RF (http://www.stat.berkely.edu/~breiman/RandomForests) 
is a fairly new ensemble method that combines trees grown 
on bootstrap samples of data and random subset bagging 
of predictor variables (Breiman, 2001). During randomization 
of features, RF can provide an importance index of 
independent variables by calculating accuracy and the 
Gini index. Furthermore, the importance index has captured 
the interactions between predictors by randomizations of 
predictors, and its performance to rank risk SNPs was 
better than that of univariate tests such as Fisher’s exact 
test when interactions are present (Lunetta et al., 2004). 
In terms of robustness to outliers and noise, and calculation 
time, RF is superior to other machine learning methods 
such as bagging or boosting (Lee et al., 2005).

In previous nuclear genomic studies, we hypothesized 
that RF is appropriate for association studies using mtSNPs 
with unique characteristics such as haploid number and 
lack of recombination, unlike nuclear SNPs. To our 
knowledge, this paper is the first application of RF to 
investigate the association of mtSNPs with disease. We 
validate the usage of RF compared with the results from 
the chi-square test using example data searching the 
association between mtDNA and type 2 diabetes. 

Example Data
Demographic information of example data is not 
consented to publish. One hundred thirty unrelated 
patients with type 2 diabetes and 65 well-matched, 
unaffected control subjects were used in the analyses. 
Type 2 diabetes was diagnosed according to World Health 
Organization criteria. Selection of non-diabetes was 
based on the following criteria: matched age with diabetes 
cases, no past history of diabetes, no diabetes in first-degree 
relatives. One hundred thirty-two mitochondrial biallelic 
SNPs among whole mtDNA were selected for subsequent 
analyses using Restriction Fragment Length Polymorphism 
(RFLP). We used the revised Cambridge Reference 
Sequence (rCRS, (Chinnery et al., 1999)) to denote which 
allele is the “common” allele at each mtSNP locus. Interestingly, 
one of mtSNPs, bp4985, has all variant alleles in type 2 
diabetes patient cases and all common alleles in unaffected 
controls. Even though this finding is inconsistent with 
previous studies, we included bp4985 in the analysis to see 
an extreme condition. Data providers do not provide details 
or data quality information on genotypes and phenotypes. 
Thus, any biological interpretation and conclusion from our 
example data are not included for the purpose of this study. 

Methods
Since mtDNA is haploid, we do not need to assume any 
genetic model (e.g., dominant, recessive, or environmental) 
to produce genotype data. Thus, we can generate a 2 x 
2 table of mtSNP versus disease status at the test locus 
directly. Fisher’s exact chi-square tests and univariate 
logistic regression analyses for calculating odds ratios 
were performed using SAS v9.1 for each mtSNP site to 
detect mtSNPs that show different allele frequency 
distributions between cases and controls. 

For RF analysis, we used RF classification tree methods 
(number of trees =10,000 [computing time; approximately 
5 minutes using Windows version]; number of random 
features at each node =   = 11) implemented in the 
Random Forests package v4.5 in R v2.3.1. In RF, trees 
were grown to the deepest possible level using random 2/3 
subsets of the cases and controls and were not pruned. 
After each tree was grown, the remaining OOB (out-of-bag) 
cases and controls (remaining 1/3 of the data) were used 
to estimate the classification error rate of that tree. Once 
all trees were grown, all data were classified using each 
tree. The following algorithm demonstrates construction 
of the “Forests” consisting of classification trees. 

1. Draw a bootstrap sample T* consisting of n cases 
with replacement from the original training data T 
with n cases (about 2/3 of the data). Remaining data 
(about 1/3 of the data) are left out for the OOB data 
and used for the estimation of prediction error.

2. When a classification tree is grown using T* sample, 
2.1 Choose a small number r, which is randomly 

selected without replacement among R predictor 
variables (= random subsets of features), and the 
default of r usually is the square root of the available 
number of variables (r is the constant over all trees 
in a “forest”).

2.2 At each node, choose a best predictor (=independent) 
variable that splits the training sample at that node 
among the subset of predictor variables selected 
in previous step 2-1.

3. Iterate steps 2-1 and 2-2 until the tree is fully grown 
(no pruning).

4. Repeat steps 1 through 3 to construct a tree to yield 
a forest of pre-determined size.

For each pair of individuals in the data, count the number 
of trees in which the pair of individuals is in the same 
terminal node, and divide by the number of trees. This is 
the “proximity” for this pair of individuals averaged across 
all trees. Dissimilarity is calculated as 1- proximity for each 
pair of individuals. Metric scaling projects the dissimilarity 
from a Euclidean space in a high-dimensional space onto 
a low-dimensional space. In metric scaling, the first and 
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Fig. 3. Validation of results from Fisher’s exact test and Random
Forests Points might be on the y = x line if both methods (chi‐
square test and Random Forests classifications) show 
concordance of results concerning association of mtSNP sites 
with phenotype. Bp4985 and bp3173 have strong concordance
with the Gini index from Random Forests. Bp4883 and bp10310
have moderate concordance with the Gini index from Random
Forests. Y‐axis indicates the “‐log p value” of Fisher’s exact test
of 132 mtSNP sites. X‐axis indicates Gini index as a variable 
importance measure.

Fig. 1. Multidimensional Scale Plot To check the Random Forest
classification results intuitively, the dissimilarities= 1‐proximities
of each observation are drawn in a two‐dimensional Euclidean 
space. Red triangles: type 2 Diabetes patients (n=130), green 
circles: unaffected control subjects (n=65). Dimension 1 gave 
good separation of the observations into two groups.

Fig. 2. Variable Importance Plots with Top 20 Variables Left panel
contains the 20 most important variables for predicting case‐
control status descending by Mean Decrease Accuracy (average
of (% of votes for true class in the untouched OOB data) ‐ (% of
votes for the correct class in the variable‐permuted OOB data)
over all trees). Right panel contains the 20 most important 
variables descending by Mean Decrease Gini Index (adding up
the Gini decrease for each individual variable over all trees). Y 
axis: top 20 variables lists, red rectangular mtSNPs: 6 
representative mtSNP sites that have p‐values less than 0.0001
using Fisher’s exact test, X axis: importance indexes (left: mean
decrease accuracy, right: mean decrease Gini index).

second scaling coordinates give useful information about 
the data. Thus, Multi Dimensional Scaling (MDS) plot, for 
which the dissimilarity is used as input, is depicted as the 
graph of the second versus the first coordinates (Shi et al., 
2005). Through MDS plots, we can have informative views 
of the data and evaluate the results of classification 
intuitively (Fig. 1).

To measure the importance of predictor variables, the 
mean decrease in accuracy and Gini index at each node 
were used. Fig. 2 illustrates the 20 most important variables 
of each measure. Mean Decrease in Accuracy exploits the 
margin, defined as the average of (% of votes for true class 
in the untouched OOB data) - (% of votes for the correct 
class in the variable-permuted OOB data) over all trees. 
In other words, the larger the size of the margin, the more 
important the predictor is. Gini importance is calculated for 
each variable using the Gini impurity criterion of the 
resulting subsets of the data at each decision node where 
the variable was used. Gini impurity is based on the 
squared probabilities of cases and controls in the two 
resultant subsets after a split is made using a variable. By 
definition, the impurity in the resulting subsets must be less 
than in the parent subset. The Gini index for a given variable 
is the sum over all trees of the decrease in Gini impurity 
after each split that involved that variable. We validated 
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+ N/A: not available for calculating OR due to zero in denominators
* p‐values from Fisher’s exact tests
∫ : Insertion allele at the locus
∬: Deletion allele at the locus

Table 1. Significant mtSNPs (p value < 0.0001) using Fisher’s exact tests

Coding 
Region Location

MtSNPs
(Variant allele)
(Common allele)

Type 2 diabetes
(N=130) 
n (%)

Non‐diabetes 
controls 
(N=65)
n (%)

OR
(95% C.I) * p‐values

rRNA 3173 C (+)∫ 0
(0%)

63
(96.22%)

N/A+
(N/A)

*1.799E‐49

C 130
(100%)

2
(3.78%)

1.00
(reference)

ND2 4883 T 31
(23.9%)

0
(0%)

N/A+
(N/A)

*1.312E‐06

C 99
(76.1%)

65
(100%)

1.00
(reference)

ND2 4985 G 130
(100%)

0
(0%)

N/A+
(N/A)

*2.058E‐53

A 0
(100%)

65
(100%)

1.00
(reference)

NC 8271 C (‐)∬ 17
(13.1%)

0
(0%)

N/A+
(N/A)

*8.771E‐04

C 113
(86.9%)

65
(100%)

1.00
(reference)

NC 8281 A (‐)∬ 0
(0%)

7
(10.77%)

N/A+
(N/A)

*3.649E‐04

A 130
(100%)

58
(89.23%)

1.00
(reference)

ND3 10310 A 72
(55.4%)

2
(3.1%)

39.10
(9.176‐166.63)

*1.198E‐14

G 58
(44.6%)

63
(96.9%)

1.00
(reference)

these measures with p-values from the Fisher’s exact 
chi-square tests. We have plotted the negative log p values 
and the Gini index values (Fig. 3).

Results
To give an intuitive view of the data, the MDS plot shows 
two distinct point clouds indicated by red triangles as type 
2 diabetes patients and green circles as unaffected control 
subjects in Fig. 1. The first dimension favors splitting 195 
subjects into two clusters; positives for controls versus 
negatives for cases.

To detect which mtSNP associates with disease, Table 
1 shows the 6 significant mtSNPs (p values < 0.0001) 
among 132 mtSNPs using Fisher’s exact test and odds 
ratio estimates from logistic regression. Due to zero cells 
in the contingency table except for bp10310, odds ratios 
were not calculated for 5 mtSNPs. Multivariate logistic 
regression analyses with interaction terms had no noticeable 
results (data not shown). 

In RF, we calculated importance indexes for predicting 
case-control status both in Mean Decrease Accuracy (left 
panel in Fig. 2, average of (% of votes for true class in the 

untouched OOB data) - (% of votes for the correct class 
in the variable-permuted OOB data) over all trees) and in 
Mean Decrease Gini index (right panel in Fig. 2, adding up 
the Gini decrease for each individual variable over all 
trees). Both the accuracy measure and the Gini index 
detected the 6 mtSNPs (red boxes), which had significant 
p-values less than 0.0001 for the Fisher’s exact test within 
the 20 most important variables. 

Under the goal of this paper, we validated the RF results 
compared with Fisher’s exact test. We plotted the scatter 
plot between Gini index from RF and negative p-values 
from chi-square tests of 132 mtSNP sites in Fig. 3. Points 
might be on the y = x (diagonal) line if both methods 
(chi-square test and RF) show concordance of results with 
respect to association of mtSNP sites with phenotype. 
Bp4985 and bp3173 were strongly detected as important 
variables using both methods. Additionally, bp10310 and 
bp4883 showed concordant results in terms of the strength 
of significance. 

Discussion 
The advantage of RF over traditional statistical methods 
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for association studies―e.g., chi-square test or logistic 
regression―is the possibility to handle a large number of 
predictor variables simultaneously, and to examine gene-gene 
interactions without a specific model. Very recently, in 
nuclear genomic association studies with hundreds of 
thousands of predictors, RF has been useful in reducing 
large amounts of predictors to practical numbers for 
subsequent analytic steps in the presence of interactions. 

In this paper, we investigated the feasibility of RF as a 
tool for detection of association using the mitochondrial 
genome. Because mtDNA does not undergo recombination, 
which may lead to a lack of independence between mtSNP 
sites, RF methods that do not require strong independence 
assumptions among predictor variables are particularly 
applicable to mtDNA markers. As we expected, RF 
methods performed as well as chi-square tests in terms 
of consistency of detecting risk mtSNPs, and somewhat 
superior to logistic regression in terms of ease of modeling 
complex relationships between the predictors flexibly. 

We found bp3173, bp4985, bp5178, bp8414, bp10310, 
and bp4883 as important determinants in top 20 ranks for 
classifying 130 diabetes and 65 non-diabetes patients 
according to the Gini index and the mean decrease in 
accuracy, similar to what we had observed using the 
Fisher’s exact tests (p<0.0001). Separation of the cases 
from the controls based on the models derived from the 
RF procedure was quite good. Concerning gene x gene 
interaction, we chose the simplest interaction model, the 
two-locus interaction model, for multivariate logistic 
regression analyses (132C2= 8,646; number of two-locus 
interaction terms among 132 mtSNPs, data not shown). 
However, we cannot be sure about only the efficiency of 
this analysis using never-ending terms in a model, but also 
the interpretation of results. In contrast, RF gave us the 
rank of risk SNPs elicited from the complex relationships 
between them without requesting a model to researchers. 

We also applied CART (Grajski et al., 1986) and a 
logistic regression method to our example data (data not 
shown); thus, only bp4985 was detected as a predictor 
because of the perfect contrast of observations between 
cases and controls. When we performed multivariate 
logistic regression model including bp4985 to assess the 
relative effect of each SNP, we could not estimate the 
effects of other mtSNPs except for bp4985 owing to too 
much information of only this mtSNP in a regression model. 
In this case, information on other mtSNPs, which had a 
relatively small effect to big effect from the only perfect one 
mtSNP, cannot be provided to researchers. Such minute 
effects should also be detected since such SNPs might 
have interactions with other SNPs as a causal factor. In 
this point of view, RF can prevent the conclusion that only 
this one mtSNP is an important predictor of diabetes risk, 

because it ranks the set of important predictors by 
allocating an importance index to each mtSNP regardless 
of one big effect. Several of the most important predictor 
variables can then be studied in independent datasets to 
further evaluate their importance. 

Consequently, we are convinced that synthesizing and 
summarizing the results from RF machine learning methods 
can be useful analysis tools for detecting evidence of 
association of disease risk with mitochondrial DNA variants.
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