Browse > Article

Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms  

Kim, Yoon-Hee (Department of Biostatistics and Epidemiology, School of Public Health, Seoul National University)
Kim, Ho (Inherited Disease Research Branch, NHGRI/NIH)
Abstract
In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods, such as chi-square tests or logistic regression models, the RF method has advantages in handling large numbers of predictor variables and examining gene-gene interactions without a specific model. Here, we applied the RF method to find the association between mitochondrial single nucleotide polymorphisms (mtSNPs) and diabetes risk. The results from a chi-square test validated the usage of RF for association studies using mtDNA. Indexes of important variables such as the Gini index and mean decrease in accuracy index performed well compared with chi-square tests in favor of finding mtSNPs associated with a real disease example, type 2 diabetes.
Keywords
association; mtSNPs; Random Forests;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chinnery, P.F., Howell, N., Andrews, R.M., and Turnbull, D.M. (1999). Clinical mitochondrial genetics. J Med Genet. 36, 425-36
2 Kato, Y., Miura, Y., Inagaki, A., Itatsu, T., and Oiso, Y. (2002). Age of onset possibly associated with the degree of heteroplasmy in two male siblings with diabetes mellitus having an A to G transition at 3243 of mitochondrial DNA. Diabet Med. 19, 784-6   DOI   ScienceOn
3 Lee, J.W., Lee, J.B., Park, M., and Song, S.H. (2005). An extensive comparison of recent classification tools applied to microarray data. Comp Stat & Data Analysis. 48, 869-885   DOI   ScienceOn
4 Lunetta, K.L., Hayward, L.B., Segal, J., and Van Eerdewegh, P. (2004). Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 5, 32   DOI   ScienceOn
5 Ohkubo, K., Yamano, A., Nagashima, M., Mori, Y., Anzai, K., Akehi, Y., Nomiyama, R., Asano, T., Urae, A., and Ono, J. (2001). Mitochondrial gene mutations in the tRNA(Leu(UUR)) region and diabetes: prevalence and clinical phenotypes in Japan. Clin Chem. 47, 1641-8
6 Suzuki, S. (2004). Diabetes mellitus with mitochondrial gene mutations in Japan. Ann N Y Acad Sci. 1011, 185-92   DOI
7 Guo, L.J., Oshida, Y., Fuku, N., Takeyasu, T., Fujita, Y., Kurata, M., Sato, Y., Ito, M., and Tanaka, M. (2005). Mitochondrial genome polymorphisms associated with type-2 diabetes or obesity. Mitochondrion. 5, 15-33   DOI   ScienceOn
8 Bureau, A., Dupuis, J., Hayward, B., Falls, K., and Van Eerdewegh, P. (2003). Mapping complex traits using Random Forests. BMC Genet. 4 Suppl 1, S64   DOI   ScienceOn
9 Poulton, J., Luan, J., Macaulay, V., Hennings, S., Mitchell, J., and Wareham, N.J. (2002). Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet. 11, 1581-3   DOI   ScienceOn
10 Burger, G., Gray, M.W., and Lang, B.F. (2003). Mitochondrial genomes: anything goes. Trends Genet. 19, 709-16   DOI   ScienceOn
11 Nigou, M., Parfait, B., Clauser, E., and Olivier, J.L. (1998). Detection and quantification of the A3243G mutation of mitochondrial DNA by ligation detection reaction. Mol Cell Probes. 12, 273-82   DOI   ScienceOn
12 Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A., and Horvath, S. (2005). Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol, 18, 547-57   DOI   ScienceOn
13 Rosenbloom, A.L., Joe, J.R., Young, R.S., and Winter, W.E. (1999). Emerging epidemic of type 2 diabetes in youth. Diabetes Care. 22, 345-54   DOI   ScienceOn
14 Grajski, K. A., Breiman, L., Viana Di Prisco, G., and Freeman, W.J. (1986). Classification of EEG spatial patterns with a tree-structured methodology: CART. IEEE Trans Biomed Eng. 33, 1076-86   DOI   ScienceOn
15 Ingman, M., Kaessmann, H., Paabo, S., and Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature 408, 708-13   DOI   ScienceOn
16 Cho, Y.M., Ritchie, M.D., Moore, J.H., Park, J.Y., Lee, K.U., Shin, H.D., Lee, H.K., and Park, K.S. (2004). Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia. 47, 549-54   DOI
17 McKinney, B.A., Reif, D.M., Ritchie, M.D., and Moore, J.H. (2006). Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics. 5, 77-88   DOI   ScienceOn
18 Park, H.S., and Lee, S.U. (2004). MitGEN: Single Nucleotide Polymorphism DB Browser for Human Mitochondrial Genome. Genomics & Informatics 2(3), 147-148
19 Niemi, A.K., Hervonen, A., Hurme, M., Karhunen, P.J., Jylha, M., and Majamaa, K. (2003). Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet. 112, 29-33   DOI
20 Mukae, S., Aoki, S., Itoh, S., Sato, R., Nishio, K., Iwata, T., and Katagiri, T. (2003). Mitochondrial 5178A/C genotype is associated with acute myocardial infarction. Circ J. 67, 16-20   DOI   ScienceOn
21 Bureau, A., Dupuis, J., Falls, K., Lunetta, K.L., Hayward, B., Keith, T.P., and Van Eerdewegh, P. (2005). Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol. 28, 171-82   DOI   ScienceOn
22 Ladoukakis, E.D., and Eyre-Walker, A. (2004). Evolutionary genetics: direct evidence of recombination in human mitochondrial DNA. Heredity. 93, 321   DOI   ScienceOn
23 Matsunaga, H., Tanaka, Y., Tanaka, M., Gong, J.S., Zhang, J., Nomiyama, T., Ogawa, O., Ogihara, T., Yamada, Y., Yagi, K., and Kawamori, R. (2001). Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care. 24, 500-3   DOI   ScienceOn
24 Diaz-Uriarte, R., and Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 7, 3   DOI
25 Suzuki, S., Oka, Y., Kadowaki, T., Kanatsuka, A., Kuzuya, T., Kobayashi, M., Sanke, T., Seino, Y., and Nanjo, K. (2003). Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A-G) mutation in Japanese: maternal inheritance and mitochondria-related complications. Diabetes Res Clin Pract. 59, 207-17   DOI   ScienceOn
26 Kahn, C.R., Vicent, D., and Doria, A. (1996). Genetics of non-insulin-dependent (type-II) diabetes mellitus. Annu Rev Med. 47, 509-31   DOI   ScienceOn