• 제목/요약/키워드: Random contact

검색결과 119건 처리시간 0.025초

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • 남기현;윤영준;맹광석;김경미;김정은;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF

IR-UWB 레이더와 Lomb-Scargle Periodogram을 이용한 비접촉 심박 탐지 (Non-contact Heart Rate Monitoring using IR-UWB Radar and Lomb-Scargle Periodogram)

  • 변상선
    • 대한임베디드공학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-32
    • /
    • 2022
  • IR-UWB radar has been regarded as the most promising technology for non-contact respiration and heartbeat monitoring because of its ability of detecting slight motion even in submillimeter range. Measuring heart rate is most challenging since the chest movement by heartbeat is quite subtle and easily interfered with by a random body motion or background noise. Additionally, periodic sampling can be limited by the performance of computer that handles the radar signals. In this paper, we deploy Lomb-Scargle periodogram method that estimates heart rate even with irregularly sampled data and uneven signal amplitude. Lomb-Scargle periodogram is known as a method for finding periodicity in irregularly-sampled and noisy data set. We also implement a motion detection scheme in order to make the heart rate estimation pause when a random motion is detected. Our scheme is implemented using Novelda's X4M03 radar development kit and its corresponding drivers and Python packages. Experimental results show that the estimation with Lomb-Scargle periodogram yield more accurate heart rate than the method of measuring peak-to-peak distance.

QR code as speckle pattern for reinforced concrete beams using digital image correlation

  • Krishna, B. Murali;Tezeswi, T.P.;Kumar, P. Rathish;Gopikrishna, K.;Sivakumar, M.V.N.;Shashi, M.
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.67-84
    • /
    • 2019
  • Digital Image Correlation technique (DIC) is a non-contact optical method for rapid structural health monitoring of critical infrastructure. An innovative approach to DIC is presented using QR (Quick Response) code based random speckle pattern. Reinforced Cement Concrete (RCC) beams of size $1800mm{\times}150mm{\times}200mm$ are tested in flexure. DIC is used to extract Moment (M) - Curvature (${\kappa}$) relationships using random speckle patterns and QR code based random speckle patterns. The QR code based random speckle pattern is evaluated for 2D DIC measurements and the QR code speckle pattern performs satisfactorily in comparison with random speckle pattern when considered in the context of serving a dual purpose. Characteristics of QR code based random speckle pattern are quantified and its applicability to DIC is explored. The ultimate moment-curvature values computed from the QR code based random speckled pattern are found to be in good agreement with conventional measurements. QR code encrypts the structural information which enables integration with building information modelling (BIM).

GaAs/AlxGa1-xAs 이차원 전자계 기반 양자소자의 Switching Noise 억제 (Suppression of Switching Noise in a Quantum Device Based on GaAs/AlxGa1-xAs Two Dimensional Electron Gas System)

  • 오영헌;서민기;정윤철
    • 한국진공학회지
    • /
    • 제21권3호
    • /
    • pp.151-157
    • /
    • 2012
  • GaAs/$Al_xGa_{1-x}As$ 이차원 전자계는 양자점, QPC (quantum point contact), 전자 간섭계 등 다양한 형태의 양자구조 제작에 널리 사용된다. 하지만 일반적으로 GaAs 기반 양자소자는 극저온에서 소자의 전도도가 시간에 따라 변하거나 두 가지의 전 상태 사이를 왔다 갔다 하는 random telegraph noise 때문에 소자의 동작 특성이 상당히 불안하다. 이러한 문제점을 해결하기 위하여 산소 플라즈마를 이용한 소자의 표면처리가 소자의 안정성에 미치는 영향을 연구하였다. 이를 통해 소자의 표면을 산소 플라즈마를 이용하여 50 W~120 W 사이의 출력으로 30 초간 처리한 후 HCl : $H_2O$ (1 : 3) 용액을 이용하여 10초간 습식식각한 경우 전도도의 안정성이 매우 향상됨을 알 수 있었다.

표면막과 표면거칠기가 접촉 저항에 미치는 영향 (Effect of Surface Film and Surface Roughness on Contact Resistance)

  • 이현철;이보라;유용훈;조용주
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.16-23
    • /
    • 2019
  • In this study, we aim to analyze the effects of both contact layer properties and surface roughness on contact resistance. The contact has a great influence on performance in terms of electrical conduction and heat transfer. The two biggest factors determining contact resistance are the presence of surface roughness and the surface layer. For this reason we calculated the contact resistance by considering both factors simultaneously. The model of this study to calculate contact resistance is as follows. First, the three representative surface parameters for the GW model are obtained by Nayak's random process. Then, the apparent contact area, real contact area, and contact number of asperities are calculated using the GW model with the surface parameters. The contact resistance of a single surface layer is calculated using Mikic's constriction equation. The total contact resistance is approximated by the parallel connection between the same asperity contact resistances. The results of this study are as follows. The appropriate thickness with reduction effect for contact resistance is determined according to the difference in conductivity between the base layer and surface layer. It was confirmed that the standard deviation of surface roughness has the greatest influence on surface roughness parameters. The results of this study will be useful for selecting the surface material and surface roughness when the design considering the contact resistance is needed.

곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석 (Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling)

  • 유용훈;조용주;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

전화조사에서 재통화 규칙준수와 응답자 임의선택의 영향 - R&R 울산 사례의 통계적 재분석 - (Effects of Call-back Rules and Random Selection of Respondents: Statistical Re-analysis of R&R’s Ulsan Survey Data.)

  • 허명회;임여주;노규형
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.247-259
    • /
    • 2003
  • 우리나라 조사업계에서는 전화조사의 방법론으로 성과 나이, 지역에 표본 수를 사전 지정하는 방식의 할당표집 (quota sampling)을 주로 쓰고 있다. 이러한 할당표집은 조사비용과 기간의 단축이라는 이점을 갖지만 이론적 타당성이 결여되어 있어 학문적으로는 받아들이기 어렵다. 때문에, 학계에서는 그 동안 수차례 임의표집(random sampling)에 근거한 전화조사를 조사업계에 요구해 왔다. 이에 응하여, (주)리서치 앤 리서치가 2002년 울산시장 선거예측 조사에 임의표집에 의한 전화조사를 실시하였다 본 사례연구는 이 자료를 심층적으로 재분석하여 임의표집에서의 재통화 및 응답자 임의선정 절차가 자료 질 및 최종 예측치에 주는 영향에 대하여 살펴볼 것이다.

Determining the Optimal Subsampling Rate for Refusal Conversion in RDD Surveys

  • Park, In-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.1031-1036
    • /
    • 2009
  • Under recent dramatic declines in response rates, various procedures have been considered among survey practitioners to reduce nonresponse in order to avoid its potential impairment to the inference. In the random digit dialing telephone surveys, substantial efforts are often required to obtain the initial contact for the screener interview. To reduce a burden with higher data collection costs, refusal conversion can be administered only to a random portion of the sample, reducing nonresponse (bias) with an expense of sample variability increment due to the associated weight adjustment. In this paper, we provide ways to determine the optimal subsampling rate using a linear cost model. Our approach for refusal subsampling is to predetermine a random portion from the full sample and to apply refusal conversion efforts if needed only to the subsample.

Liquid crystal alignment on patterned-alignment films

  • Lias, Jais Bin;Oo, Thet Naing;Yazawa, Tomohiro;Kimura, Munehiro;Akahane, Tadashi
    • Journal of Information Display
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2011
  • To come up with a bistable liquid crystal (LC) device using unpolarized UV light, single-step laser patterning on a photoalignment layer using a photomask was proposed to achieve an equilibrium configuration of LC molecules in contact with a periodically patterned substrate. The patterns were formed by stripes of alternating random planar and homeotropic anchoring on a submicrometer scale in the order of $0.5{\mu}m$. Two possible configurations of bistable LC cells that can be obtained by combining a micropatterned surface formed with alternating random-planar- and homeotropic-alignment with planar- or homeotropic-alignment surfaces were proposed. The alignment properties of the two proposed models were investigated, along with the microscopic switching behavior of micropatterned nematic LC cells.

노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰 (Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis)

  • 서범교;성인하
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.