
Communications of the Korean Statistical Society
2009, Vol. 16, No. 6, 1031–1036

Determining the Optimal Subsampling Rate for Refusal
Conversion in RDD Surveys

Inho Park1,a

aEconomic Statistics Department, The Bank of Korea

Abstract
Under recent dramatic declines in response rates, various procedures have been considered among survey

practitioners to reduce nonresponse in order to avoid its potential impairment to the inference. In the random
digit dialing telephone surveys, substantial efforts are often required to obtain the initial contact for the screener
interview. To reduce a burden with higher data collection costs, refusal conversion can be administered only to a
random portion of the sample, reducing nonresponse (bias) with an expense of sample variability increment due
to the associated weight adjustment. In this paper, we provide ways to determine the optimal subsampling rate
using a linear cost model. Our approach for refusal subsampling is to predetermine a random portion from the
full sample and to apply refusal conversion efforts if needed only to the subsample.
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1. Introduction

Under recent dramatic declines in response rates (e.g., Brick et al., 2005), various procedures have
been considered among survey practitioners to reduce nonresponse in order to avoid its potential
impairment to the inference, that is, nonresponse bias. In the random digit dialing(RDD) surveys,
each sampled number is contacted for a screener interview followed by a main (or extended) interview.
Since the former component (i.e., the screener) often requires substantial efforts for an initial contact,
refusal conversion (or a serious of multiple callbacks) is very costly and time-consuming. Thus, it can
be administered only to a random portion of the sample, reducing data collection costs but improving
(weighted) response rates. In other words, subsampling refusals would lead to bias reduction but
also to design inefficiency due to the associated weight adjustment. Thus, at subsampling, there is a
trade-off between bias reduction and variance increase. Related discussion can be found in Hansen
and Hurwitz (1946), Deming (1953), Särndal et al. (1992), Elliott et al. (2000), Brick et al. (2002),
Harter et al. (2007) and references cited therein.

In this paper, we provide ways to determine the optimal subsampling rate for refusal conversion
under a linear cost model. Our approach for refusal conversion is to predetermine before survey a
random portion from the full sample for refusal conversion if needed. It is different from those of, for
example, Hansen and Hurwitz (1946) and Harter et al. (2007), where the entire sample is released and
a subsample is selected from the initial refusals among all the cases from the entire sample for refusal
conversion. In Section 2, we briefly describe the screening interview process under subsampling for
refusal conversion. In Section 3, we demonstrate how to obtain the optimal refusal subsampling rate
with some artificial examples. In Section 4, we discuss limitations and further considerations to our
approach.
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2. Interview Process under Refusal Subsampling

For the illustrations in this paper we consider an unstratified single-stage simple random sampling in
RDD surveys. With the initial calling effort for the screener interview, the full sample s of n numbers
selected from the frame U can be classified into four non-overlapping sets as follows:

siC = set of eligible sample numbers completing the screener after the initial calling effort,

siR = set of eligible sample numbers refusing the screener after the initial calling effort,

sIE = set of ineligible sample numbers,

sNW = set of nonresidential and nonworking sample numbers,

where sR = siC ∪ siR ∪ sIE = s \ sNW denotes the set of residential sample numbers. Administering
a certain amount of refusal conversion efforts, initially refused numbers can be converted eventually
to the screener completes (i.e., the final screener completes), that is, siR = svC ∪ s f R, where the two
non-overlapping sets are defined as follows:

svC = set of eligible sample numbers completing the screener with conversion efforts,

s f R = set of eligible sample numbers eventually refusing the screener with conversion efforts.

Based on the above decomposition, we can define seven rates as follows:

riC = ]siC/]s = initial screener completion rate,

riR = ]siR/]s = initial screener refusal rate,

rIE = ]sIE/]s = ineligibility rate,

rR = ]sR/]s = residency rate,

rNW = ]sNW/]s = non-residency and non-working rate,

rvC = ]svC/]siR = screener refusal conversion rate,

r f R = ]s f R/]siR = screener refusal unconversion rate,

where ]A represents the number of units in the set A. Note that riC +riR +rIE +rNW = 1, riC +riR +rIE =

rR, rR + rW = 1 and rvC + r f R = riR.
Assume that our approach is to select a random portion at a rate of 0 < f ≤ 1 from the full sample

prior to the data collection and to apply refusal conversion to the initial refusals only from the selected
portion (i.e., the subsample). Let s1 denote the random portion designated for refusal conversion
and s2 the remainder of the full sample, where the subsampling rate is defined as f = ]s1/]s. To
compensate for the associated under representation due to the refusal subsampling, a weight of w2 =

1/ f is assumed to be assigned only to the cases of s1 that are refusals after the initial calling effort
(i.e., siR ∩ s1) and a weight of w1 = 1 for the rest. The loss of the (potential) final respondents due to
the exclusion from refusal conversion will be compensated by increasing the initial full sample s of
size n at a rate of α( f ) ≥ 1. Then nα( f ) is the size of the full sample increased to compensate for the
loss due to refusal subsampling at the rate of f and α(1) ≡ 1 denotes the rate when no exclusion (or
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full subsampling, i.e., f = 1) is made. Furthermore, the number of total screener completes nCS ( f )
can be written as

nCS ( f ) = nα( f )rR(riC + f riRrvC) = nCS ,1( f ) + nCS ,2( f ),

where nCS ,1( f ) = nα( f )rRriC and nCS ,2( f ) = nα( f )rR f riRrvC . Use of the weight adjustment for refusal
subsampling would lead to some design inefficiency expressible by so-called the effective sample size:

ne( f ) =
nCS ( f )
d( f )

= nα( f )rR
(riC + riRrvC)2

riC + riRrvC/ f
,

where the design effect (Kish, 1992) is given as

d( f ) =
nCS ( f )

[
nCS ,1( f )w2

1 + nCS ,2( f )w2
2

]
[
nCS ,1( f )w1 + nCS ,2( f )w2

]2 .

If the precision requirement for refusal subsampling is to achieve the resultant effective sample size
equivalent to the one with no exclusion ( f = 1), that is, ne( f ) = nCS (1) = nrR(riC + riRrvC), (e.g., Brick
et al., 2005), then

α( f ) =
riC + riRrvC/ f

riC + riRrvC
,

which is one at f = 1 as required.

3. Optimal Refusal Subsampling Rate

Suppose that cost components with no exclusion for refusal conversion (that may be figured out based
on previous or reference survey(s)) can be written based on a simple linear model as follows:

c(1) = nrR{ciCriC + ciVriRrvC + ciWriR(1 − rvC) + cOS [1 − (riC + riR)]} + n(1 − rR)cNW ,

where

ciC = cost of carrying out the screener with a cooperative respondent with no refusal,

ciV = cost of carrying out the screener with a cooperative respondent who was initially refused
but is converted as cooperative with the refusal conversion efforts,

ciW = cost of finalizing the screener with either other non-respondent who was initially refused or
that of other types using the refusal conversion efforts,

cOS = cost of finalizing a non-human contact,

cNW = cost of finalizing a non-residential (including non-working) number.

Under refusal subsampling, it can be changed to

c( f ) = nα( f )rR{ciCriC + f [ciVriRrvC + ciWriR(1 − rvC)] + cOS [1 − (riC + riR)]} + nα( f )(1 − rR)cNW .

Then the relative cost (i.e., cost gain or loss) due to refusal subsampling can be written by taking a
ratio of the two costs c( f ) and c(1), that is, φ( f ) = c( f )/c(1), which is rewritten as

φ( f ) = α( f )β( f ), (3.1)
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Figure 1: Comparisons of relative costs φ( f ) for varying rate compositions

where

α( f ) = α1 +
α2

f
,

β( f ) = β1 + β2 f ,

α1 =
riC

riC + riRrvC
,

α2 = 1 − α1,

β1 = c(1)−1
(
rR{ciCriC + cOS [1 − (riC + riR)]} + (1 − rR)cNW

)
,

β2 = 1 − β1.

Following a common strategy adopted in the optimal sample allocation theory (e.g., Särndal et al.,
1992), the optimal subsampling rate may be obtained by maximizing the relative cost for a specified
precision requirement. Routine calculation (see Appendix) shows that the relative cost is maximized
at

f ∗ =

√
α2β1

α1β2
(3.2)

with 0 < f ∗ ≤ 1 and 0 < φ( f ∗) ≤ 1 as required.
Figure 1 compares relative costs of refusal subsampling with varying rate compositions (riC , riR,

rvC , rR) at a fixed cost structure (ciC , ciV , ciW , cOS , cNW ) = (1.0, 2.0, 2.0, 1.3, 0.4). The curves of the
relative costs φ( f ) for all of the five rate compositions (I through V) are all convex with their inflection
point indicating their respective optimal rate for refusal subsampling. For comparisons, consider a
line of composition I as a reference. We see, from composition I, that a subsampling rate of f = .70
might lead to a relative cost of .973, i.e., 2.7% gain in the survey cost. For a higher initial refusal
rate riR (composition II), cost gains are much greater with optimum attained at smaller f . For a
higher conversion rate rvC (composition III), optimum gain in cost is attained at a greater f but with
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smaller relative gain. For a higher residential rate rR (composition IV), cost gains are much larger
with retaining the lowest, that is, the optimal rate. Finally, for a smaller initial screener completion
rate riC (composition V), cost gains are much smaller and the optimal rate is higher.

Figure 2 compares relative costs of subsampling with varying cost components (ciC , ciV , ciW , cOS ,
cNW ) at a fixed rate structure (riC , riR, rvC , rR) = (.5, .4, .5, .4). As before, the relative cost (φ( f ))
curves are all convex and consider a line of composition I as a reference one. For either larger ciV

(composition II) or ciW (composition III), cost gains are larger with optimum at a smaller f . For either
larger cOS or cNW , cost gains get smaller, thus less efficient with a higher optimum refusal subsampling
rate.

4. Discussion

Our approach can be further modified to reflect more of the practical aspects, for example:

1) additional IE and NW numbers may be determined during refusal conversion;

2) cost/rate composition may vary across surveys and in time;

3) stratification, unequal probability selection and other complex design features may involve in the
sample design;

4) alternative precision requirements may be considered to better incorporate two-phase nature of
refusal subsampling (within the predetermined portion).

Nonetheless, our findings in Sections 2 and 3 show important aspects related to survey (cost) ef-
ficiency with refusal subsampling. The optimal strategy for refusal subsampling, that is, survey cost
savings can be pursued assuming a linear cost model based on the equal effective sample size con-
straint. For a given cost structure, cost gains are larger for higher rates of initial refusal, residency or
initial completion. For a given rate structure, cost gains are larger for higher costs for refusal conver-
sion. In summary, one can expect efficiency gains in the survey cost by adopting refusal subsampling
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methodology, when data collection is challenging and costly especially for converting initial screener
nonrespondents into the screener completes (that may be described with higher initial refusal and res-
idential rates and much more expensive refusal conversion). Albeit its limitations, our approach may
provide a reasonable guideline for determining a reasonable subsampling rate.

Appendix: Proof of (3.2)

From (3.1), the relative cost can be written as φ( f ) = α1β1 + α2β2 + α1β2 f + α2β1/ f . Then,
the first and second derivatives with respect to f are given as ∂φ( f )/∂ f = α1β2 − α2β1 f −2 and
∂2φ( f )/∂ f 2 = 2α2β1 f −3, since 0 < αi, βi < 1 for all i = 1, 2. Solving ∂φ( f )/∂ f = 0 for f , we
get f ∗ = (α−1

1 α2β1β
−1
2 )1/2 ∈ (0, 1]. Furthermore, using Cauchy-Schwartz inequality, we have

φ( f ∗) = α1β1 + α2β2 + 2
√
α1α2β1β2 =

(√
α1 + α2 +

√
β1 + β2

)2 ≤ (α1 + α2)(β1 + β2) = 1,

which completes the proof.
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