Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.
최근 탄소배출을 최소화하기 위해 전기자동차의 사용이 증가함에 따라 핵심 부품인 리튬이온 배터리의 상태 및 성능 분석의 중요성이 대두되고 있다. 따라서 배터리의 상태 및 성능에 영향을 줄 수 있는 배터리의 전압, 전류 및 온도뿐만 아니라 전기 자동차의 운행 데이터 및 충전 패턴 데이터를 활용한 종합적인 분석이 필요하다. 따라서 전기적 이동 수단에서 수집되는 배터리 데이터 수집 및 데이터 전처리, 단순 배터리 데이터에 추가적인 운전자 운전 습관에 대한 데이터 수집 및 전처리, 분석된 영향인자를 기반으로 인공지능 알고리즘 세부 설계 및 수정, 해당 알고리즘을 기반으로 하는 배터리 분석 및 평가 모델 설계하였다. 본 논문에서는 실시간 전기버스를 대상으로 운행 데이터와 배터리 데이터를 수집하여 Random Forest 알고리즘 활용하여 학습시킨 후, XAI 알고리즘을 통해 배터리 상태 중요 영향인자로 배터리의 상태, 운행 및 충전 패턴 데이터 등을 종합적으로 고려하여 운행 패턴에서 급가속, 급 감속, 급정지와 충 방전 패턴에서 일 주행횟수, 일일 누적 DOD와 셀 방전에서 셀 전압 차 , 셀 최대온도, 셀 최소온도의 요소가 배터리 상태에 많은 영향을 미치는 인자로 확인되었으며, Random Forest 알고리즘 기반으로 배터리 분석 및 평가 모델을 설계하고 평가하였다.
이 연구는 청년 삶의 만족도를 높일 수 있는 방안을 모색하고자 청년의 삶의 만족도에 영향을 미치는 요인들을 탐색하고자 수행되었다. 이를 위해 한국청소년정책연구원의 '2021 청년 사회·경제 실태조사의 데이터를 활용하여, 2021년 기준 만 18세~34세 청년 2,041명을 연구대상으로 하였다. 청년 삶의 만족도에 영향을 미치는 다양한 변수를 탐색하기 위해 랜덤 포레스트 방법을 적용하였다. 분석에 활용된 변수는 인구·사회학적 요인과 심리·정서를 포함하는 요인으로 총 21개이다. 랜덤 포레스트를 적용한 청년 삶의 만족도에 영향을 미치는 변수들을 탐색한 결과는 다음과 같다. 첫째, 분석에 투입된 요인 21개의 예측변수는 모두 청년 삶의 만족도에 영향을 미치는 것으로 나타났다. 둘째, 청년 삶이 만족도에 가장 큰 영향을 미치는 요인은 '직업가치관'으로 나타났다. 셋째, '정치적효능감', '기성세대인식'과 같이 청년들의 사회에 대한 인식도 청년들의 삶의 만족도에 영향을 미치는 변수임을 확인할 수 있다. 이러한 연구결과를 바탕으로 청년 삶의 만족도에 영향을 미치는 변수들을 설명하고 논의점을 제시하였다.
The roughness effects are very important due to the presence of interacting asperities in mixed lubrication regime. An average Reynolds equation using flow factors is useful to determine the effects of surface roughness on mixed lubrication. In this study, the effect of kurtosis on flow factors is investigated using random rough surfaces generated numerically, The results show that flow factors are very sensitive to h/$\sigma$ according to the value of kurtosis in the partial lubrication regime.
본 논문은 요인들의 처리구조와 실험단위들의 설계구조에서 지분이 발생하는 경우의 지분계획모형에서 분산성분을 구하는 방법을 다루고 있다. 지분구조의 고정효과와 확률효과 그리고 실험단위들의 지분구조에 따른 오차성분을 포함하는 지분계획모형을 제안하고 있다. 모형내 확률효과의 분산성분과 다수의 오차항에 따른 분산성분을 추정하는 방법으로 상수적합법을 이용하고 있다. 상수적합법에 의한 제1종 제곱합의 계산은 모형의 단계별 적합에서 주어지는 모형행렬의 사영을 이용하고 구하고 있다. 사영을 이용한 변동요인별 제1종 제곱합의 기댓값 계산에 Hartley의 합성법이 이용된다. 단계별 방법에 의한 모형의 순차적 적합은 모형행렬로의 사영공간을 나타내는 사영행렬의 구조를 파악할 수 있는 이점이 있다.
With a long sensing period, the inter-frame spectrum sensing in IEEE 802.22 standard is vulnerable to the effect of the traffic of the primary user (PU). In this article, we address the two degrading factors that affect the inter-frame sensing performance with respect to the random arrival/leaving of the PU traffic. They are the noise-only samples under the random arrival traffic, and the PU-signal-contained samples under the random leaving traffic. We propose the model in which the intra-frame sensing cooperates with the inter-frame one, and the inter-frame sensing uses the time-of-arrival (ToA), and time-of-leave (ToL) detectors to reduce the two degrading factors in the inter-frame sensing time. These ToA and ToL detectors are used to search for the sample which contains either the ToA or ToL of the PU traffic, respectively, which allows the partial cancelation of the unnecessary samples. At the final stage, the remaining samples are input into a primary user detector, which is based on the energy detection scheme, to determine the status of PU traffic in the inter-frame sensing time. The analysis and the simulation results show that the proposed scheme enhances the spectrum-sensing performance compared to the conventional counter-part.
In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.
소셜 미디어의 대중화로 지능화된 피싱 공격을 방어하기 위해 접근하고자 하는 사이트의 상태(정상/피싱)를 판별하는 것이 필요하다. 본 연구에서는 머신러닝 기반 분류 모델을 통해 사이트의 정상/피싱 여부를 예측하는 모델을 제안한다. 첫째, 'URL'에 대한 정보를 수집하여 수치 데이터로 변환한 후, 이상치를 제거한다. 둘째, 변수들 간의 상관관계 및 독립성을 파악하기 위해 VIF(Variance Inflation Factors)를 적용한다. 셋째, 머신러닝 기반 분류 모델을 활용하여 피싱 사이트 탐지 모델을 개발하고, 이를 통해 사이트의 상태를 예측한다. 분류 모델 중 랜덤 포레스트(Random Forest)의 성능이 가장 우수했으며, 테스트 데이터에서 정밀도(Precision) 93.74%, 재현율(Recall) 92.26%, 정확도(Accuracy) 93.14%를 보였다. 향후 이 연구는 다방면의 피싱 범죄 탐지에 적용할 수 있을 것으로 기대된다.
본 논문에서는 반복인자가 여러 개인 반복측정자료에 대하여 반복인자간의 상관성을 고려한 복합공분산(composite covariance) 모형을 살펴보았다. 그러나 반복인자가 3개 이상인 경우에는 기존의 통계프로그램을 이용하여 적합하는 것이 불가능하다. 복합공분산 모형을 실제 자료에 적합하기위해 반복인자의 차원을 축소한 모형과 랜덤효과 모형을 이용하여 근사적으로 적합하는 방법을 제시하고 883명으로부터 수집한 반복인자가 3개인 혈압자료에 적용하였다.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.212-222
/
2021
Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.