• 제목/요약/키워드: Random Factors

검색결과 1,156건 처리시간 0.029초

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구 (Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data)

  • 홍승모
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.385-391
    • /
    • 2023
  • 최근 탄소배출을 최소화하기 위해 전기자동차의 사용이 증가함에 따라 핵심 부품인 리튬이온 배터리의 상태 및 성능 분석의 중요성이 대두되고 있다. 따라서 배터리의 상태 및 성능에 영향을 줄 수 있는 배터리의 전압, 전류 및 온도뿐만 아니라 전기 자동차의 운행 데이터 및 충전 패턴 데이터를 활용한 종합적인 분석이 필요하다. 따라서 전기적 이동 수단에서 수집되는 배터리 데이터 수집 및 데이터 전처리, 단순 배터리 데이터에 추가적인 운전자 운전 습관에 대한 데이터 수집 및 전처리, 분석된 영향인자를 기반으로 인공지능 알고리즘 세부 설계 및 수정, 해당 알고리즘을 기반으로 하는 배터리 분석 및 평가 모델 설계하였다. 본 논문에서는 실시간 전기버스를 대상으로 운행 데이터와 배터리 데이터를 수집하여 Random Forest 알고리즘 활용하여 학습시킨 후, XAI 알고리즘을 통해 배터리 상태 중요 영향인자로 배터리의 상태, 운행 및 충전 패턴 데이터 등을 종합적으로 고려하여 운행 패턴에서 급가속, 급 감속, 급정지와 충 방전 패턴에서 일 주행횟수, 일일 누적 DOD와 셀 방전에서 셀 전압 차 , 셀 최대온도, 셀 최소온도의 요소가 배터리 상태에 많은 영향을 미치는 인자로 확인되었으며, Random Forest 알고리즘 기반으로 배터리 분석 및 평가 모델을 설계하고 평가하였다.

랜덤포레스트를 활용한 청년 삶의 만족도 영향 요인 탐색 (Exploring Factors Influencing Life Satisfaction of Youth using Random Forests)

  • 이성심
    • 산업융합연구
    • /
    • 제21권7호
    • /
    • pp.9-17
    • /
    • 2023
  • 이 연구는 청년 삶의 만족도를 높일 수 있는 방안을 모색하고자 청년의 삶의 만족도에 영향을 미치는 요인들을 탐색하고자 수행되었다. 이를 위해 한국청소년정책연구원의 '2021 청년 사회·경제 실태조사의 데이터를 활용하여, 2021년 기준 만 18세~34세 청년 2,041명을 연구대상으로 하였다. 청년 삶의 만족도에 영향을 미치는 다양한 변수를 탐색하기 위해 랜덤 포레스트 방법을 적용하였다. 분석에 활용된 변수는 인구·사회학적 요인과 심리·정서를 포함하는 요인으로 총 21개이다. 랜덤 포레스트를 적용한 청년 삶의 만족도에 영향을 미치는 변수들을 탐색한 결과는 다음과 같다. 첫째, 분석에 투입된 요인 21개의 예측변수는 모두 청년 삶의 만족도에 영향을 미치는 것으로 나타났다. 둘째, 청년 삶이 만족도에 가장 큰 영향을 미치는 요인은 '직업가치관'으로 나타났다. 셋째, '정치적효능감', '기성세대인식'과 같이 청년들의 사회에 대한 인식도 청년들의 삶의 만족도에 영향을 미치는 변수임을 확인할 수 있다. 이러한 연구결과를 바탕으로 청년 삶의 만족도에 영향을 미치는 변수들을 설명하고 논의점을 제시하였다.

Effect of kurtosis on the Flow Factors Using Average Flow Model

  • Cho, Yong-Joo;Kim, Tae-Wan;Koo, Young-Pil
    • KSTLE International Journal
    • /
    • 제3권1호
    • /
    • pp.7-11
    • /
    • 2002
  • The roughness effects are very important due to the presence of interacting asperities in mixed lubrication regime. An average Reynolds equation using flow factors is useful to determine the effects of surface roughness on mixed lubrication. In this study, the effect of kurtosis on flow factors is investigated using random rough surfaces generated numerically, The results show that flow factors are very sensitive to h/$\sigma$ according to the value of kurtosis in the partial lubrication regime.

지분계획의 분산성분 (Variance Components of Nested Designs)

  • 최재성
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1093-1101
    • /
    • 2015
  • 본 논문은 요인들의 처리구조와 실험단위들의 설계구조에서 지분이 발생하는 경우의 지분계획모형에서 분산성분을 구하는 방법을 다루고 있다. 지분구조의 고정효과와 확률효과 그리고 실험단위들의 지분구조에 따른 오차성분을 포함하는 지분계획모형을 제안하고 있다. 모형내 확률효과의 분산성분과 다수의 오차항에 따른 분산성분을 추정하는 방법으로 상수적합법을 이용하고 있다. 상수적합법에 의한 제1종 제곱합의 계산은 모형의 단계별 적합에서 주어지는 모형행렬의 사영을 이용하고 구하고 있다. 사영을 이용한 변동요인별 제1종 제곱합의 기댓값 계산에 Hartley의 합성법이 이용된다. 단계별 방법에 의한 모형의 순차적 적합은 모형행렬로의 사영공간을 나타내는 사영행렬의 구조를 파악할 수 있는 이점이 있다.

Block-Time of Arrival/Leaving Estimation to Enhance Local Spectrum Sensing under the Practical Traffic of Primary User

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.514-526
    • /
    • 2013
  • With a long sensing period, the inter-frame spectrum sensing in IEEE 802.22 standard is vulnerable to the effect of the traffic of the primary user (PU). In this article, we address the two degrading factors that affect the inter-frame sensing performance with respect to the random arrival/leaving of the PU traffic. They are the noise-only samples under the random arrival traffic, and the PU-signal-contained samples under the random leaving traffic. We propose the model in which the intra-frame sensing cooperates with the inter-frame one, and the inter-frame sensing uses the time-of-arrival (ToA), and time-of-leave (ToL) detectors to reduce the two degrading factors in the inter-frame sensing time. These ToA and ToL detectors are used to search for the sample which contains either the ToA or ToL of the PU traffic, respectively, which allows the partial cancelation of the unnecessary samples. At the final stage, the remaining samples are input into a primary user detector, which is based on the energy detection scheme, to determine the status of PU traffic in the inter-frame sensing time. The analysis and the simulation results show that the proposed scheme enhances the spectrum-sensing performance compared to the conventional counter-part.

대청호 Chl-a 예측을 위한 random forest와 gradient boosting 알고리즘 적용 연구 (A study on applying random forest and gradient boosting algorithm for Chl-a prediction of Daecheong lake)

  • 이상민;김일규
    • 상하수도학회지
    • /
    • 제35권6호
    • /
    • pp.507-516
    • /
    • 2021
  • In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.

머신러닝 기반 피싱 사이트 탐지 모델 (Machine Learning-based Phishing Website Detection Model)

  • 오수민;박민서
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.575-580
    • /
    • 2024
  • 소셜 미디어의 대중화로 지능화된 피싱 공격을 방어하기 위해 접근하고자 하는 사이트의 상태(정상/피싱)를 판별하는 것이 필요하다. 본 연구에서는 머신러닝 기반 분류 모델을 통해 사이트의 정상/피싱 여부를 예측하는 모델을 제안한다. 첫째, 'URL'에 대한 정보를 수집하여 수치 데이터로 변환한 후, 이상치를 제거한다. 둘째, 변수들 간의 상관관계 및 독립성을 파악하기 위해 VIF(Variance Inflation Factors)를 적용한다. 셋째, 머신러닝 기반 분류 모델을 활용하여 피싱 사이트 탐지 모델을 개발하고, 이를 통해 사이트의 상태를 예측한다. 분류 모델 중 랜덤 포레스트(Random Forest)의 성능이 가장 우수했으며, 테스트 데이터에서 정밀도(Precision) 93.74%, 재현율(Recall) 92.26%, 정확도(Accuracy) 93.14%를 보였다. 향후 이 연구는 다방면의 피싱 범죄 탐지에 적용할 수 있을 것으로 기대된다.

복합구조 반복측정자료에 대한 모형 연구 (Modelling for Repeated Measures Data with Composite Covariance Structures)

  • 이재훈;박태성
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1265-1275
    • /
    • 2009
  • 본 논문에서는 반복인자가 여러 개인 반복측정자료에 대하여 반복인자간의 상관성을 고려한 복합공분산(composite covariance) 모형을 살펴보았다. 그러나 반복인자가 3개 이상인 경우에는 기존의 통계프로그램을 이용하여 적합하는 것이 불가능하다. 복합공분산 모형을 실제 자료에 적합하기위해 반복인자의 차원을 축소한 모형과 랜덤효과 모형을 이용하여 근사적으로 적합하는 방법을 제시하고 883명으로부터 수집한 반복인자가 3개인 혈압자료에 적용하였다.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.