• Title/Summary/Keyword: Random Coefficient Autoregressive Model

Search Result 13, Processing Time 0.022 seconds

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

A Note on the Strong Mixing Property for a Random Coefficient Autoregressive Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.243-248
    • /
    • 1995
  • In this article we show that a class of random coefficient autoregressive processes including the NEAR (New exponential autoregressive) process has the strong mixing property in the sense of Rosenblatt with mixing order decaying to zero. The result can be used to construct model free prediction interval for the future observation in the NEAR processes.

  • PDF

STATIONARY $\beta-MIXING$ FOR SUBDIAGONAL BILINEAR TIME SERIES

  • Lee Oe-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.79-90
    • /
    • 2006
  • We consider the subdiagonal bilinear model and ARMA model with subdiagonal bilinear errors. Sufficient conditions for geometric ergodicity of associated Markov chains are derived by using results on generalized random coefficient autoregressive models and then strict stationarity and ,a-mixing property with exponential decay rates for given processes are obtained.

Estimation for random coefficient autoregressive model (확률계수 자기회귀 모형의 추정)

  • Kim, Ju Sung;Lee, Sung Duck;Jo, Na Rae;Ham, In Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.257-266
    • /
    • 2016
  • Random Coefficient Autoregressive models (RCA) have attracted increased interest due to the wide range of applications in biology, economics, meteorology and finance. We consider an RCA as an appropriate model for non-linear properties and better than an AR model for linear properties. We study the methods of RCA parameter estimation. Especially we proposed the special case that an random coefficient ${\phi}(t)$ has the initial value ${\phi}(0)$ in the RCA model. In practical study, we estimated the parameters and compared Prediction Error Sum of Squares (PRESS) criterion between AR and RCA using Korean Mumps data.

The Mixing Properties of Subdiagonal Bilinear Models

  • Jeon, H.;Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.639-645
    • /
    • 2010
  • We consider a subdiagonal bilinear model and give sufficient conditions for the associated Markov chain defined by Pham (1985) to be uniformly ergodic and then obtain the $\beta$-mixing property for the given process. To derive the desired properties, we employ the results of generalized random coefficient autoregressive models generated by a matrix-valued polynomial function and vector-valued polynomial function.

The Asymptotic Variance of the Studentized Residual Autocorrelations for a Generalized Random Coefficient Autoregressive Processes

  • Park, Sang-Woo;Cho, Sin-Sup;Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.531-541
    • /
    • 1997
  • The asymptotic distribution of residual autocorrelation functions from a generalized p-order random coefficient autoregressive process (GRCA(p)) is derived. To this end, we first describe the GRCA(p) models and then consider the normalised residuals after fitting the model. This result can be applied to the residual analysis for the diagonostic purpose.

  • PDF

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.

Comparison between nonlinear statistical time series forecasting and neural network forecasting

  • Inkyu;Cheolyoung;Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.87-96
    • /
    • 2000
  • Nonlinear time series prediction is derived and compared between statistic of modeling and neural network method. In particular mean squared errors of predication are obtained in generalized random coefficient model and generalized autoregressive conditional heteroscedastic model and compared with them by neural network forecasting.

  • PDF

Efficient Quasi-likelihood Estimation for Nonlinear Time Series Models and Its Application

  • Kim, Sahmyeong;Cha, Kyungyup;Lee, Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.101-113
    • /
    • 2003
  • Quasi likelihood estimators defined by Wedderburn are derived for several nonlinear time series models. And also, the least squared estimator and Quasi-likelihood estimator are compared in sense of asymptotic relative efficiency at those models. Finally, we apply these estimations to a real data on exchanging rate and stock market prices.