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Abstract
We consider a subdiagonal bilinear model and give sufficient conditions for the associated Markov chain

defined by Pham (1985) to be uniformly ergodic and then obtain the β-mixing property for the given process.
To derive the desired properties, we employ the results of generalized random coefficient autoregressive models
generated by a matrix-valued polynomial function and vector-valued polynomial function.

Keywords: Subdiagonal Bilinear model, geometric ergodicity, β-mixing, stationarity, generalized
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1. Introduction

Among many nonlinear time series models, we are interested in bilinear models introduced by Granger
and Anderson (1978) and Subba Rao (1981). As shown by Subba Rao and Gabr (1984), the bilinear
model is particularly attractive in modelling processes with sample paths of occasional sharp spikes
and when interactions between {Xt} and the error process {ϵt} are significant. Bilinear models are
studied by Bhaskara Rao et al. (1983), Pham (1985, 1986), Liu and Brockwell (1988), Chanda
(1992), Liu (1992), Terdik (1999), Giraitis and Surgailis (2002), Lee (2006) and Kristensen (2009,
2010). In those papers, probabilistic as well as statistical properties such as stationarity, invertibility,
ergodicity, mixing property, existence of higher order moments, central limit theorem, estimation
problems including model identification and finding suitable white noise are examined.

General bilinear process of order p, q,m, l is defined by

yt = a0 +

p∑
i=1

aiyt−i +

q∑
i=0

biϵt−i +

l∑
i=1

m∑
j=1

ci jyt− jϵt−i,

where ϵt is a sequence of independent and identically distributed(iid) random variables and ai, bi and
ci j are real constants.

In this paper, we restrict ourselves to a type of subdiagonal bilinear models given by

yt = a0 +

p∑
i=1

aiyt−i +

q∑
i=0

biϵt−i +

P∑
i=1

Q+i∑
j=i

ci jyt− jϵt−i (1.1)

and give some simple easy-to-verify conditions that simultaneously imply stationarity and exponential
β-mixing. We begin by showing that a subdiagonal bilinear model can be rewritten as a case of a
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generalized polynomial random coefficient autoregressive model(GRCA). One of the advantages of
such a technique is that it enables the use of the results on GRCA models (see, Feigin and Tweedie,
1985; Doukhan, 1994; Carassco and Chen, 2002). β-mixing with a geometric convergence rate of the
bilinear models can be derived from the V-uniform ergodicity of the auxiliary Markov process.

Let {Xt : t = 0, 1, 2, . . .} be a discrete time Markov chain defined on Rk, k ≥ 1 with time homoge-
neous n-step transition probabilities

P(n)(x, A) = P(Xn ∈ A|X0 = x), x ∈ Rk, A ∈ B(Rk),

where B(Rk) is a Borel σ-field on Rk.
A Markov chain {Xt} is called V-uniformly ergodic if there exists some probability measure π on

B(Rk) and positive real numbers r < 1 and c > 0 such that , for all n ∈ N,

∥|P(n)(x, ·) − π(·)∥|V ≤ crn,

where ∥| · ∥|V denotes the V-norm distance between two probability measures.
Note that every V-uniformly ergodic process is geometric ergodic and exponential β-mixing and

geometric ergodicity are equivalent for Markov processes. Since β-mixing is stronger than strong
mixing, a geometrically ergodic Markov process accommodates limiting theorems such as a functional
central limit theorem and the law of iterated logarithm for β-mixing process and/or strong mixing
process.

For further terminologies and results in the Markov chain theory, we refer to Meyn and Tweedie
(1993).

2. Main Results

Consider the following subdiagonal bilinear process;

yt = a0 +

p∑
i=1

aiyt−i +

q∑
i=0

biϵt−i +

P∑
i=1

Q∑
j=0

ci, jyt−i− jϵt−i, (2.1)

which is the same type of (1.1), where {ϵt} is a sequence of iid random variables and ai, bi and ci, j are
real constants. (2.1) can be represented as

yt = Z1,t−1 + b0ϵt, Zt = A(ϵt)Zt−1 + B(ϵt), (2.2)

where Zt = (Z1,t, . . . , Zn,t)′ ∈ Rn, n = max{p, P+q, P+Q}, A(ϵt) ∈ Rn×n are matrix valued polynomial
function and B(ϵt) ∈ Rn are a vector-valued polynomial function. The precise forms of Zi,t, A(ϵt) and
B(ϵt) are given in Section 3.

We make an additional assumption on the error process ϵt.

Condition C1: The probability distribution of ϵt is absolutely continuous with respect to the Lebesgue
measure. The support of ϵt is defined by its strictly positive density and contains an open set and zero.
Assume that E[|ϵt |2s] < ∞ for some 0 < s ≤ 1.

For simplicity of notation, A(ϵt) and B(ϵt) are denoted by At and Bt, respectively. Let log+ x =
max{log x, 0} and ∥ · ∥ be any matrix norm.
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For a sequence of iid random matrices {At} with E[log+ ∥At∥] < ∞, top Lyapunov exponent γ is
defined by

γ = lim
t→∞

1
t

E
[
log ∥AtAt−1 · · · A1∥

]
. (2.3)

Note that γ does not depend on the matrix norm ∥ · ∥.
The following theorem is given in Kistensen (2009).

Theorem 1. Suppose γ < 0. Then (2.1) have a unique, strictly stationary ergodic solution given by

y∗t = Z∗1,t−1 + b0ϵt,

Z∗t = Bt +

∞∑
i=1

At · · · At+1−iBt−i.

For any given value Z0,Zt converges almost surely to Z∗t and yt converges almost surely to y∗t as t → ∞.

Lemma 1. Let γ < 0. Then (1)
∑∞

i=1(Πi−1
k=0At−k)Bt−i converges a.s. (2) Πk

j=1A jx → 0, ∀x a.s as
k → ∞.

A Markov process {Zt}∞t=0 is said to hold the Foster-Lyapunov drift condition if there exists a
positive function V on Rn, a compact set K ⊂ Rn and real constants δ < ∞, v > 0 and 0 < ρ < 1 such
that

E[V(Zt+1)|Zt = z] ≤ ρV(z) − v, z ∈ Kc,

E[V(Zt+1)|Zt = z] ≤ δ, z ∈ K.

Lemma 2. If γ < 0, then the Foster-Lyapunov drift condition holds for {Zt0t}∞t=0 with some integer
t0 > 0.

Let ρ(A) denote the spectral radius of a matrix A. Define Φ(z) = zn −∑n
i=1 aizn−i, then Φ(z) is the

characteristic polynomial of A(0). Our main theorem is given as follows:

Theorem 2. In addition to the condition C1 and γ < 0, suppose that ρ(A(0)) < 1. Then {Zt0t}∞t=0
in (2.2) is uniformly ergodic and β-mixing with exponential decay. Also, yt in (2.1) is β-mixing with
exponential decay rates and E|yt |r < ∞ for some 0 < r < s.

Under the Assumption C1 and some rank condition on Cn which is given by Cn = [An−1B|An−2B|
· · · |AB|A] for properly defined A and B, geometric ergodicity can be obtained. However, it is not
easy to determine whether the rank condition holds or not. (see, e.g. Bougerol and Picard, 1992;
Kristensen, 2010). In general, it is easier to check ρ(A(0)) < 1 than the rank condition.

Lemma 3. Sufficient conditions for γ < 0 are :

(1) E[log ∥At∥] < 0.

(2) E[∥At · · · A1∥r] < 1, for some 0 < r < s.

(3) ρ(E[AtA′t]) < 1.
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Corollary 1. Let the Condition C1, Φ(z) , 0 if |z| > 1 and one of (1)∼(3) in Lemma 3 hold, then the
conclusion in Theorem 2 holds.

Corollary 2. If C1 and
∑ |ai| + E|ϵt |

∑ |ci, j| < 1 hold, then the result of Theorem 2 holds.

Remark 1. As shown in Kristensen (2009), ARMA model or various GARCH-type processes such
as APGARCH, NGARCH, VGARCH, LGARCH and EGARCH are special cases of the subdiago-
nal bilinear model given in (2.1) and hence Theorem 2 can be applied to obtain conditions for the
geometric ergodicity and β-mixing properties for those types of the processes.

We now consider a autoregressive model with bilinear errors defined by

Xt =

r∑
i=1

ϕiXt−i + ηt, (2.4)

ηt = a0 +

p∑
i=1

aiηt−i +

q∑
i=0

biϵt−i +

P∑
i=1

Q∑
j=0

ci, jηt−i− jϵt−i. (2.5)

To make a Markovian representation of the model (2.4)∼(2.5), define Yt = (Xt, Xt−1, . . . , Xt−r+1,
Z1,t, . . . ,Zn,t)′, where Zt = (Z1,t, . . . ,Zn,t)′ ∈ Rn, n = max{p, P + q, P + Q}, ηt = Z1,t−1 + b0ϵt and
Zt = A(ϵt)Zt−1 + B(ϵt). Then Yt = C(ϵt)Yt−1 + D(ϵt), with matrix valued polynomial function C(ϵt) and
vector valued polynomial function D(ϵt) which are given as follows:

C(ϵt) =



ϕ1 ϕ2 · · · ϕr−1 ϕr 1 0 · · · 0
1 0 · · · 0 0
0 1 · · · 0 0 O(r−1)×n

. . .

0 0 · · · 1 0
On×r An×n(ϵt)


and

D(ϵt) = (b0ϵt, 0, . . . , 0, B(ϵt))′.

Let γ∗ be the top Lyapunov exponent of C(ϵt) and let Ψ(z) = zr −∑r
i=1 ϕizr−i.

Theorem 3. Under the Conditions C1, γ∗ < 0 and Ψ(z)Φ(z) , 0 if |z| > 1, {Xt} in (2.4) is β-mixing
with exponential decay rates.

Corollary 3. If C1, γ∗ < 0,
∑ |ϕi| < 1 and

∑ |ai| < 1 are satisfied, then the result in Theorem 3 holds.

Corollary 4. Under C1,
∑ |ϕi| < 1 and

∑ |ai| + E|ϵt |
∑ |ci j| < 1, the β-mixing property of Xt can be

derived.
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3. Proofs

To obtain a Markovian representation (2.2) for the process generated by the Equation (2.1), define
Q̄ = max{q,Q}, P̄ = max{p − Q̄, P}, and

Zi,t = (ai + ci,0ϵt)Z1,t−1 + Zi+1,t−1 +

P̄∑
j=1

ci, jϵtZQ̄+ j,t−1 +
{
(aib0 + bi)ϵt + b0ci,0ϵ

2
t

}
, 1 ≤ i ≤ Q̄ − 1,

ZQ̄,t =
(
aQ̄ + cQ̄,0ϵt

)
Z1,t−1 +

P̄∑
j=1

(
aQ̄+ j + cQ̄, jϵt

)
ZQ̄+ j,t−1 +

{
a0 +

(
aQ̄b0 + bQ̄

)
ϵt + b0cQ̄,0ϵ

2
t

}
,

ZQ̄+1,t = Z1,t−1 + b0ϵt,

ZQ̄+i,t = ZQ̄+i−1,t−1, i = 2, 3, . . . , n − Q̄.

For more details, we may consult Pham (1985, 1986) and Kristensen (2009, Appendix A).
For notational simplicity, we assume that p = q = P = Q by taking ai, bi, ci j zero whenever i

exceeds p, q Q respectively or j exceeds P. In this case n = 2p. The explicit expressions of A(ϵt) and
B(ϵt) are given by:

A(ϵt)2p×2p =

(
A1t A2t

A3t A4t

)
,

where

A1t =



a1 + c1,0ϵt 1 0 0 · · · 0
a2 + c2,0ϵt 0 1 0 · · · 0
...

...
...
...
. . .

...
ap−1 + cp−1,0ϵt 0 0 0 · · · 1

ap + cp,0ϵt 0 0 0 · · · 0


, A2t = ϵt ·



c1,1 c1,2 · · · c1,p
c2,1 c2,2 · · · c2,p
...

...
. . .

...
cp−1,1 cp−1,2 · · · cp−1,p
cp,1 cp,2 · · · cp,p


,

A3t =



1 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0


, A4t =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0


and

B(ϵt)2p×1 = B0 + B1ϵt + B2ϵ
2
t ,

where

B0 = (0, . . . , 0, a0, 0, . . . , 0)′ ,

B1 =
(
a1b0 + b1, a2b0 + b2, . . . , apb0 + bp, b0, 0, . . . , 0

)′
,

B2 =
(
b0c1,0, b0c2,0, . . . , b0cp,0, 0, . . . , 0

)′
.

Proof: Proof of Theorem 1 See Theorem 1.1 and Theorem 2.5 of Bougerol and Picard (1992) or
Theorem 1 of Kristensen (2009). �
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Proof: Proof of Lemma 1 Desired results follow directly from Theorem 1 by taking Z0 = x. �

Proof: Proof of Lemma 2 From definition of γ in (2.3), γ < 0 implies the existence of some integer
t0 such that E[log ∥At0 · · · A1∥] < 0, and hence E∥At0 · · · A1∥r < ρ for some ρ < 1 and r, 0 < r < s
(see, Hardy et al., 1952). Now take a test function V : R2p → R+ as V(x) = ∥x∥r + 1. Then by the
Minkowski’s inequality for integrals, we have that

E[V(Zt0 )|Z0 = z] = E


∥∥∥∥∥∥∥At0 · · · A1z +

n0−1∑
i=0

(
Πi−1

k=0At0t−k

)
Bt0−i

∥∥∥∥∥∥∥
r + 1

≤ E∥At0 · · · A1∥r∥z∥r + E

∥∥∥∥∥∥∥
t0−1∑
i=0

(
Πi−1

k=0At0−k

)
Bt0−i

∥∥∥∥∥∥∥
r

+ 1

≤ ρV(z) + M, (3.1)

where M = E∥∑t0−1
i=0 (Πi−1

k=0At0−k)Bt0−i∥r + 1 < ∞. Clearly,

sup
z∈K

E[V(Zt0 )|V0 = z] < ∞, (3.2)

for any compact set K ⊂ Rn. Hence (3.1) and (3.2) and V(z) → ∞ as ∥z∥ → ∞ yield the conclusion.
�

Proof: Proof of Theorem 2 Let Z0 = z. Then we have that

Zt0 = At0 · · · A1z +
t0−1∑
i=0

(
Πi−1

k=0At0−k

)
Bt0−i.

ρ(A(0)t) < 1 follows from the assumption ρ(A(0)) < 1. Therefore combining Lemma 2.1, Lemma
2.2 and Theorem 1 of Carrasco and Chen (2002) (see also, Doukhan (p.97)), we obtain that {Zt0t}∞t=0 is
V-uniformly ergodic and hence {Zt} is β-mixing with exponential decay.

The conditional distribution of (yt,Zt) in (2.2) given (ys,Zs), s < t depends only on Zt−1. Therefore
β-mixing of yt process follows from that of Zt with at least the same convergence rate. The existence
of moments is obtained by Meyn and Tweedie (1993). �

In the following two corollaries, we provide easy-to-check conditions.

Proof: Proof of Corollary 1 From assumption on Φ(z), we have that ρ(A(0)) < 1. Applying Lemma
3 and Theorem 2, the desired result is obtained. �

Proof: Proof of Corollary 2 For n × n matrix A = [ai, j], denote |A| = [|ai, j|]. From assumption∑ |ai| + E|ϵt |
∑ |ci, j| < 1 and some simple but tedious calculation, we can show that ρ(A(0)) < 1 and

ρ(E|A1|) < 1. Moreover ρ(E|A1|) < 1 ensures γ < 0. Apply Theorem 2 to get the results. �

Proof: Proof of Theorem 3 The conclusion follows from the fact thatΨ(z)Φ(z) , 0 for |z| > 1 implies
ρ(C(0)) < 1. �

Proof: Proof of Corollary 3 If
∑ |ϕi| < 1 and

∑ |ai| < 1, then ρ(C(0)) < 1. �

Proof: Proof of Corollary 4 Note that from
∑ |ai| + E|ϵt |

∑ |ci j| < 1, we have that γ∗ < 0 and
ρ(C(0)) < 1. Then apply Theorem 3. �
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