• Title/Summary/Keyword: Raman spectrometry

Search Result 22, Processing Time 0.021 seconds

Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies (토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향)

  • Choi, Hyung-Jun;An, Jinsung;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic principles and limitations of quantitative and qualitative analyses including pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry, and microscopes were investigated. Chemical extraction methods for the analysis of mediated hazardous substance (additives and sorbed matters) in microplastics were also discussed with focusing on in vitro bioaccessibility assay for the human oral exposure route. Based on the described methodologies for the analysis of microplastics in soil, it is expected that these methods enable to select appropriate analysis techniques in consideration of medium state, contamination level and sample quantity.

Micro Raman Spectroscopic Analysis of Local Stress on Silicon Surface in Semiconductor Fabrication Process (반도체 제조 공정에서 실리콘 표면에 유입된 Stress의 마이크로 Raman 분광분석)

  • Son, Min Young;Jung, Jae Kyung;Park, Jin Seong;Kang, Sung Chul
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.359-366
    • /
    • 1992
  • Using micro-Raman spectrometer, we investigated the evaluation of microstress on silicon surface after the local thermal oxidation. The induced stress of silicon surface after local thermal oxidation shows maximum value at the interface of silicon oxide and active area. The smaller the size of active area, the larger stress. From the evaluation of three other device isolation processes, A, B and moB, whose active size has $0.45{\mu}m$ in length, moB process is turned out to have the lowest stress value and the smallest bird's beak effect.

  • PDF

A study on analytical methods for polycyclic aromatic hydrocarbons in foods (식품 중 다환방향족탄화수소 분석법 연구)

  • Kim, Yong-Yeon;Shin, Han-Seung
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.45-57
    • /
    • 2022
  • This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in food products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various food products using gas chromatography-mass spectrometry (GC-MS), enzyme-linked immunosorbent assay (ELISA) and raman spectroscopy. Recently, the rapid on-site response for the detection of hazardous substances in food aims to develop an onsite rapid detection of a simplified technical analysis method to reduce the time and cost required for analysis of PAHs. Current PAHs detection methods have been reviewed along with new raman spectroscopy analytical method.

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Wide Field Imaging Analysis of Graphene (그래핀의 대면적 이미지 특성 분석)

  • Kwon, Kanghyuk;Kim, Nayoung;Havener, Robin W.;Won, Donggwan;Cho, Seungmin;Park, Jiwoong
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.143-147
    • /
    • 2013
  • A Raman spectrometer is essential for analyzing the characteristics of graphene. The commercial micro-Raman spectrometer is useful for measuring small areas, but due to the small measuring area, it has limited use in industry, as a sampling measure. This paper suggests a Raman spectrometer able to get a large area image of graphene. By using this image, we can get information on defects and on the presence of graphene. Therefore, this equipment can be used for quality assessment for production of graphene.

Characteristics of Diamond Films Deposited on Cemented Tungsten Carbide Substrate (초경합금기판 위에 성장되는 다이아몬드 막의 특성)

  • 김봉준;박상현;박재윤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.387-394
    • /
    • 2004
  • Diamond films were deposited on the cemented tungsten carbide WC-Co cutting insert substrates by using both microwave plasma chemical vapor deposition(MWPCVD) and radio frequency plasma chemical vapor deposition (RFPCVD) from $CH_4$$-H_2$$-O_2$ gas mixture. Scanning electron microscopy and X-ray diffraction techniques were used to investigate the microstructure and phase analysis of the materials and Raman spectrometry was used to characterize the quality of the diamond coating. Diamond films deposited using MWPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show a dense, uniform, well faceted and polycrystalline morphology. The compressive stress in the diamond film was estimated to be (1.0∼3.6)$\pm$0.9 GPa. Diamond films which were deposited on the WC-Co cutting insert substrates by RFPCVD from $CH_4$$-H_2$$-O_2$ gas mixture show relatively good adhesion, very uniform, dense and polycrystalline morphology.

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

An analysis of tribological properties of the metal interlayered DLC films prepared by PECVD method (PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석)

  • Jeon, Young-Sook;Choi, Won-Seok;Park, Yong-Seob;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.951-954
    • /
    • 2004
  • 본 논문에서는 DLC(Diamond-like Carbon) 박막과 기판 사이에 금속층을 포함하는 DLC 박막의 기계적 특성을 분석하였다. 금속층은 sputtering법을 사용하고, DLC 박막은 PECVD법을 사용하여 각각 중착하였다. 티타늄(Ti), 니켄(Ni), 크롬(Cr)을 각 중간 금속층으로 사용한 후 DLC 박막과 실리콘(Si) 기판 간의 기계적 특성을 분석하였다. 각 막의 두께는 FE-SEM으로 확인하였고, DLC 박막의 구조 평가는 Raman spectrometer를 사용하여 분석하였으며, 각 금속층과 DLC 박막의 표면 상태는 AFM을 이용하여 확인하였다. XRD 분석을 통하여 박막의 격자분석을 하였고, SIMS(secondary ion mass spectrometry) 분석을 통하여 DLC 박막의 depth Profile을 확인하였다.

  • PDF

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF