Browse > Article
http://dx.doi.org/10.23093/FSI.2022.55.1.45

A study on analytical methods for polycyclic aromatic hydrocarbons in foods  

Kim, Yong-Yeon (Department of Food Science and Biotechnology, Dongguk University-Seoul)
Shin, Han-Seung (Department of Food Science and Biotechnology, Dongguk University-Seoul)
Publication Information
Food Science and Industry / v.55, no.1, 2022 , pp. 45-57 More about this Journal
Abstract
This study was proceeded the analytical methods using various analytical instruments for polycyclic aromatic hydrocarbons (PAHs) in food products. Various analytical methods were developed to determine levels of PAHs including benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and chrysene formed in various food products using gas chromatography-mass spectrometry (GC-MS), enzyme-linked immunosorbent assay (ELISA) and raman spectroscopy. Recently, the rapid on-site response for the detection of hazardous substances in food aims to develop an onsite rapid detection of a simplified technical analysis method to reduce the time and cost required for analysis of PAHs. Current PAHs detection methods have been reviewed along with new raman spectroscopy analytical method.
Keywords
polycyclic aromatic hydrocarbons; gas chromatography-mass spectrophotometry; enzyme-linked immunosorbent assay; raman spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min BD. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food. Chem. 129(4): 1420-1426 (2011)   DOI
2 Scharnweber T, Fisher M, Suchanek M, Knopp D, Niessner R. Monoclonal antibody to polycyclic aromatic hydrocarbons based on a new benzo[a]pyrene immunogen. J. Anal. Chem. 371(5): 578-585 (2001)
3 Shi X, Zhang D, Yan WJX, Yang J, Wang C, Ma J. Portable surface-enhanced raman scattering sensor for the rapid detection of polycyclic aromatic hydrocarbons in coastal seawater. Mar. Technol. Soc. J. 53(2): 46-55 (2019)
4 Pfannkuche J, Lubecki L, Schmidt H, Kowalewska G, Kronfeldt HD. The use of surface-enhanced raman scattering (SERS) for detection of PAHs in the gulf of gdansk (Baltic Sea). Mar. Pollut. Bull. 64(3): 614-626 (2012)   DOI
5 Guillen MD, Sopelana P, Partearroyo MA. Food as a source of polycyclic aromatic carcinogens. Rev. Environ. 12(3): 133-146 (1997)
6 Djinovic J, Popovic A, Jira W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat. Sci. 80(2): 449-456 (2008)   DOI
7 Vivo TG, Schoenmakers PJ. Automatic selection of optimal Savitzky-Golay smoothing. Anal. Chem. 78(13): 4598-4608 (2006)   DOI
8 Kolomijeca A, Kronfeldt HD, Kwon YH. A portable surface enhanced raman spectroscopy (SERS) sensor system applied for seawater and sediment investigations on an arctic sea-trial. International. J. Offshore. Polar. Eng. 23: 161-165 (2013)
9 Lin WH, Lu YH, Hsu YJ. Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J. Colloid. Interface Sci. 418: 87-94 (2014)   DOI
10 Dost K, Ideli C. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV-Vis detection. Food. Chem. 133(1): 193-199 (2012)   DOI
11 Xu W, Xiao J, Chen Y, Chen Y, Ling X, Zhang J. Graphene-veiled gold substrate for surface-enhanced raman spectroscopy. Adv. Mater. 25(6): 928-933 (2013)   DOI
12 Zhang CY, Hao B, Zhao B, Fu Y, Zhang H, Moeendarbari S, Pickering CS, Hao YW, Liu YQ. Graphene oxide-wrapped flower-like silver particles for surface-enhanced raman spectroscopy and their applications in polychlorinated biphenyls detection. Appl. Surf. Sci. 400: 49-56 (2017)   DOI
13 Colas F, Crassous MP, Laurent S, Litaker RW, Rinnert E, Gall EL, Compere C. A surface plasmon resonance system for the underwater detection of domoic acid. Limnol. Oceanogr. Methods. 14(7): 456-465 (2016)   DOI
14 Oh SS. Outbreak mechanism and properties of novel harmful substances. Research Report of Youlchol Foundation. (2011)
15 Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 22(12): 2028-2035 (2011)   DOI
16 Kim IS, Ahn MS, Jang DK. A study on the occurrence of benzo[a] pyrene in fats and oils by heat treatment (I). Korean. J. Soc. Food Sci. 9(4): 323-328 (1993)
17 Seo I, Nam H, Shin HS. Influence of polycyclic aromatic hydrocarbons formation in sesame oils with different roasting conditions. Korean. J. Food. Sci. Technol. 41(4): 355-361 (2009)
18 Shin BR, Yang SO, Kim YS. Trends in the reduction of benzo[a] pyrene in sesame oils. Food Ind. Nutr. 19(1): 5-12 (2014)
19 Lee KH. Analysis of benzopyrene in foods. Guideline of Korea Food and Drug Safety Administration. (2008)
20 Cho HK, Kim M, Park SK, Shin HS. Analysis of benzo[a]pyrene content and risk assessment. Korean J. Food Sci. Animal. Resour. 31(6): 960-965 (2011)   DOI
21 Shin HS. Improvement of analytical method for benzo[a]pyrene in foods and study on monitoring and exposure. Contaminated chemical division of Korea Food and Drug Safety Administration. (2010)
22 Lund M, Duedahl OL, Christensen JH. Extraction of polycyclic aromatic hydrocarbons from smoked fish using pressurized liquid extraction with integrated fat removal. Talanta. 79(1): 10-15 (2009)   DOI
23 Lanoul A, Coleman T, Asher SA. UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. Anal. Chem. 74(6): 1458-1461 (2002)   DOI
24 Baan RA, Steenwinkel MJST, Berg PTM, Roggeband R, Delft JHM. Molecular dosimetry of DNA damage induced by polycyclic aromatic hydrocarbons; relevance for exposure monitoring and risk assessment. Hum. Exp. Toxicol. 13(12): 880-887 (1994)   DOI
25 Kang BM, Lee BM, Shin HS. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in korea. J Toxicology Environ Health. A. 77(22-24): 1359-1371 (2014)   DOI
26 Fan Z, Li Z, Liu S, Yang F, Bian Z, Wang Y, Tang G, Zhao Q, Deng H, Liu S. Rapid fluorescence immunoassay of benzo[a]pyrene in mainstream cigarette smoke based on a dual-functional antibody-DNA conjugate. RSC Adv. 8: 29562-29569 (2018)   DOI
27 Kim H, Kosuda KM, Van Duyne RP, Stair PC. Resonance raman and surface- and tip-enhanced raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39: 4820-4844 (2010)   DOI
28 Kupstat A, Knopp D, Niessner R, Kumke MU. Novel intramolecular energy transfer probe for the detection of benzo(a)pyrene metabolites in a homogeneous competitive fluorescence immunoassay. J. Phys. Chem. B. 114(4): 1666-1673 (2010)   DOI
29 Cheng J, Zhang S, Wang S, Wang P, Wang XO, Su, Xie J. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced raman spectroscopy. Food. Chem. 276: 157-163 (2019)   DOI
30 Lapviboonsuk J, Loganathan B. Polynuclear aromatic hydrocarbons in sediments and mussel tissue from the lower tennessee river and kentucky lake. J. Ky. Acad. Sci. 68(2): 186-197 (2007)
31 Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk : A meta-analytical approach. Cancer Epidemiol. Biomarkers Prev. 10(5): 439-446 (2001)
32 Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB, Prostate, lung, colorectal, ovarian cancer project team. Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Research. 65(17): 8034-8041 (2005)   DOI
33 Fu S, Guo X, Wang H, Yang T, Wen Y, Yang H. Functionalized Au nanoparticles for label-free raman determination of ppb level benzopyrene in edible oil. Sensor. Actuators. B: Chem. 212: 200-206 (2015)   DOI
34 Wei MY, Wen SD, Yang XQ, Guo LH. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens. Bioelectron. 24(9): 2909-2914 (2009)   DOI
35 Ciecierska M, Obiedzinski MW. Polycyclic aromatic hydrocarbons in the bakery chain. Food. Chem. 141(1): 1-9 (2013)   DOI
36 Kim YH, Yoon EK, Lee HM, Park KA, Jun EA, Lee CH, Choi SY, Lim ST, Ze KR, Choi KS. Exposure assessment for polycyclic aromatic hydrocarbons in the model menu system of Korean. J. Food. Hyg. Safety. 19(4): 176-184 (2004)
37 Knopp D. Immunoassay development for environmental analysis. Anal. Bioanal. Chem. 385(3): 425-427 (2006)   DOI
38 Lee YN, Lee SH, Kim JS, Patra JK, Shin HS. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products. Food. Chem. 277: 156-161 (2019)   DOI
39 Zielinski TL, Smith SA, Pestka JJ, Gray JI, Smith DM. ELISA to quantify hexanal-protein adducts in a meat model system. J. Agric. Food. Chem. 49: 3017-3023 (2001)   DOI
40 Goodridge CF, Beaudry RM, Pestka JJ, Smith DM. ELISA for monitoring lipid oxidation in chicken myofibrils through quantification of hexanal-protein adducts. J. Agric. Food. Chem. 51: 7533-7539 (2003)   DOI
41 Lee JW, Jeong JH, Park SW, Lee KG. Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed foods and their raw materials. Food control. 92: 286-292 (2018)   DOI
42 Emon JMV, Gerlach CL. A status report on field-portable immunoassay. Environ. Sci. Technol. 29(7): 312A-317A (1995)   DOI
43 Toth L, Blaas W. The effect of smoking technology on the content of carcinogenic hydrocarbons in smoked meat products. Fleischwirtschaft. 52: 1419-1422 (1972)
44 Schneider RJ. Environmental immunoassays. Anal. Bioanal. Chem. 375(1): 44-46 (2003)   DOI
45 Fahnrich KA, Pravda M, Guilbault GG. Immunochemical detection of polycyclic aromatic hydrocarbons (PAHs). Anal. Lett. 35(8): 1269-1300 (2002)   DOI
46 Kramer PM. A strategy to validate immunoassay test kits for TNT and PAHs as a field screening method for contaminated sites in Germany. Anal. Chim. Acta. 376(1): 3-11 (1998)   DOI
47 Yang P, Zheng QL, Xu H, Liu JS, Jin LT. A highly sensitive electrochemical impedance spectroscopy immunosensor for determination of 1-pyrenebutyric acid based on the bifunctionality of Nafion/Gold nanoparticles composite electrode. Chin. J. Chem. 30(5): 1155-1162 (2012)   DOI
48 Matschulat D, Deng A, Niessner R, Knopp D. Development of a highly sensitive monoclonal antibody based ELISA for detection of benzo[a]pyrene in potable water. Analyst. 130(7): 1078-1086 (2005)   DOI
49 Goryacheva IY, Eremin SA, Shutaleva EA, Suchanek M, Niessner R, Knopp D. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Anal. Lett. 40(7): 1445-1460 (2007)   DOI
50 Asher SA. Ultraviolet resonance raman spectrometry for detection and speciation of trace polycyclic aromatic hydrocarbons. Anal. Chem. 56(4): 720-724 (1984)   DOI
51 Wretling S, Eriksson A, Eskhult GA, Larsson B. Polycyclic aromatic hydrocarbons (PAHs) in swedish smoked meat and fish. J. Food. Compost. Anal. 23(3): 264-272 (2010)   DOI
52 Kim YY, Patra JK, Shin HS. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food control. 131: 108421-108427 (2022)   DOI
53 Fesenko O, Dovbeshko G, Dementjev A, Karpicz R, Kaplas T, Svirko Y. Graphene-enhanced raman spectroscopy of thymine adsorbed on single-layer graphene. Nanoscale. Res. Lett. 10(1): 163-169 (2015)   DOI
54 Bao L, Sheng PT, Li J, Wu SY, Cai QY, Yao SZ. Surface enhanced raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst. 137(17): 4010-4015 (2012)   DOI
55 Alexander J, Benford D, Cockburn A, Cravedi JP, Dogliotti E, Domenico AD, Fernandezcruz ML, Gremmels JF, Furst P, Galli C, Gzyl PGJ, Heinemeyer G, Johansson N, Mutti A, Schlatter J, Leeuwen RV, Peteghem CV, Verger P. Polycyclic aromatic hydrocarbons in food : Scientific opinion of the panel on contaminants in the food chain. The EFSA Journal. 724: 1-114 (2008)