• Title/Summary/Keyword: Raman intensity

Search Result 134, Processing Time 0.033 seconds

Feasibility Study for the Monitoring of Urea in Dialysate Solution using Raman Spectroscopy

  • Kim, Jae-Jin;Hwang, Jin-Young;Kim, Yong-Dan;Chung, Ho-Eil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.805-808
    • /
    • 2011
  • We have determined the urea concentration in an aqueous solution using Raman spectroscopy by incorporating a Teflon tube as an effective intensity correction standard as well as sample container. A non-overlapping Teflon band was used as the reference peak to correct Raman intensity variations that occasionally resulted from changes in laser power. To increase the sensitivity, we positioned a copper reflector inside the Teflon tube to maximize the collection of Raman scattering. The obtained accuracy using Raman spectroscopy was 0.53 mM, close to the range of accuracy of previous NIR studies (0.15-0.52 mM).

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

Raman Scattering Characteristics with Varying Liquid Water Temperature (유체온도 변화에 따른 Raman 산란 특성)

  • An, Jeongsoo;Yang, Sunkyu;Chun, Seyoung;Chung, Moonki;Choi, Youngdon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.621-627
    • /
    • 1999
  • This paper presents Raman scattering of liquid water to obtain the characteristics with variation of temperature. Very clear Stokes-Raman signals were observed, which shows H-O vibration stretching and H-O-H vibration bending. The obtained spectrum were processed by FFT filter to extract the noise and base. The spectral shape of the H-O stretching provided a various sensitive signature which allowed temperature to be determined by a curve-fitting technique. Those are Maximum Intensity, Maximum Wave Length, FWHM(Full Width at Half Maximum), PMCR(Polymer Monomer Concentration Ratio) and TSIR(Temperature Sensitive Intensity Ratio). TSIR method shows the highest accuracy of $0.1^{\circ}C$ in mean error and $0.32^{\circ}C$ In maximum error.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Equivalence Ratio Measurements in Gas Spray Using Laser Raman Scattering (Laser Raman Scattering을 이용한 가스 분무내 당량비 계측에 관한 연구)

  • Jin, S.H.;Park, K.S.;Song, J.I.;Kim, G.S.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.7-14
    • /
    • 1997
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air mixture in injected spray. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity signal. Raman shifts and Raman scattering cross -sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ are measured precisely. Our results show an excellent agreement with those of other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air shows that $O_2:N_2=0.206:0.794$. We used gas injector which was operated at 1 bar. Methane is used as a fuel. Spray region is $10mm\times37mm$ and this region is divided into 80 points. In Raman signals are obtained and ensemble averaged for each point. 3-d and contour plot of distribution of equuivalence ratio is presented. Our measured results show that the equivalence ratio of methane/air mixture in methane-rich region is reasonable. However, more study is necessary for methane-lean region because background noise level is almost same as Raman intensity of methane.

  • PDF

Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering

  • Lim, Jae-Wook;Kang, Ik-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.237-242
    • /
    • 2013
  • This experiment was conducted for the purpose of developing such a sensor that can quickly sense dopamine concentration by using chitosan-gold nanoshell. Chitosan nano particles were reacted with gold nano particles so as to synthesize chitosan-gold nanoshell, and the size of the synthesized product was about 150 nm. When dopamine was reacted with chitosan-gold nanoshell, the size of it was not definitely changed, but dopamine was well reacted with chitosan-gold nanoshell, and it generated SERS (surface-enhanced Raman scattering), which led to a clear difference in the intensity of Raman scattering within the range of dopamine concentration (1 mM-10 mM). When Raman scattering was intensity marked on chitosan-gold nanoshell by employing a calibration curve according to dopamine concentration, a straight line whose margin of error was narrow was earned.

Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology

  • Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.111-124
    • /
    • 2013
  • Surface-enhanced Raman scattering (SERS) effect deals with the enhancement of the Raman scattering intensity by molecules in the presence of a nanostructured metallic surface. The first observation of surface-enhanced Raman spectra was in 1974, when Fleischmann and his group at the University of Southampton, reported the first high-quality Raman spectra of monolayer-adsorbed pyridine on an electrochemically roughened Ag electrode surface. Over the last thirty years, it has developed into a versatile spectroscopic and analytical technique due to the rapid and explosive progress of nanoscience and nanotechnology. This review article describes the recent development in field of surface-enhanced Raman scattering research, especially fabrication of various SERS active substrates, mechanism of SERS effect and its various applications in both surface sciences and analytical sciences.

The study on the fiber optic sensor for the distributed temperature measurement (분포온도 계측을 위한 광파이버 온도센서 시스템에 관한 연구)

  • 이광진;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1746-1749
    • /
    • 1997
  • A distributed optical fiber temperature sensor can continually monitor the measurand at every point along of its fiber length. It is based on OTDR technics which used extreamlly weak backward scattered light called Raman scattering. When the Pulsed high intensity laser light injected into the optical fiber there are several kind of backscattered light such as Rayleigh, Stokes, and anti-Stokes, etc. caused by impurities molecular vibrations. The temperature distribution is derived form the intensity ratio Raman scatted light-Stokes versus anti-Stokes-and the time function between light injection and signal detection. It is shown that the priniciple of distributed sensing, the system desing, and the result of experiments.

  • PDF

Asymmetry of the 1.54${\mu}m$ forward and backward raman gain in methane (라만매질 $CH_4$의 전후방 1.54${\mu}m$ 유도라만 산란광의 비대칭적 발생)

  • 최영수;고해석;강응철
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • The 1.54 ${\mu}{\textrm}{m}$ forward and backward stimulated Raman scattering (SRS) have been studied in CH$_4$pumped by 1.06 ${\mu}{\textrm}{m}$ Nd:YAG laser. The forward and backward SRS output energy in a single pass were measured at dufferent CH$_4$pressures. Under steady state conditions, the pump input threshold energies and Raman gains in forward and backward directions were for Raman conversion at various CH$_4$pressures for a tight focusing geometry. The forward and backward slope efficiency for Raman conversion were 18% and 34% respectively. The pump input threshold energy of the backward SRS was lower than that of the forward. In backward SRS, the experimental input laser threshold and Raman gain values were in good agreement with the calculated values at different pressures of CH$_4$. The retio of the backward to the forward SRS gain was appoximately 1.4 times above 1200 psi. We obtained that the backward Raman gain coefficient was 0.32 cm/GW, and the forward Raman gain coefficient 0.23cm/GW at 1400 psi. Asymmetry of the forward and backward Raman gain is caused by the interaction between different pump intensities of each direction duting the amplification of the Stokers. The backward Raman gain is proportional to the average pump intensity. However, the forward SRS output grows by depleting the local pump intensity.

  • PDF

A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering (UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구)

  • Jin, S.H.;Heo, H.S.;Kim, G.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF