DOI QR코드

DOI QR Code

Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering

  • Lim, Jae-Wook (Department of Chemical & Bio Engineering, Gachon University) ;
  • Kang, Ik-Joong (Department of Chemical & Bio Engineering, Gachon University)
  • Received : 2012.10.31
  • Accepted : 2012.11.30
  • Published : 2013.01.20

Abstract

This experiment was conducted for the purpose of developing such a sensor that can quickly sense dopamine concentration by using chitosan-gold nanoshell. Chitosan nano particles were reacted with gold nano particles so as to synthesize chitosan-gold nanoshell, and the size of the synthesized product was about 150 nm. When dopamine was reacted with chitosan-gold nanoshell, the size of it was not definitely changed, but dopamine was well reacted with chitosan-gold nanoshell, and it generated SERS (surface-enhanced Raman scattering), which led to a clear difference in the intensity of Raman scattering within the range of dopamine concentration (1 mM-10 mM). When Raman scattering was intensity marked on chitosan-gold nanoshell by employing a calibration curve according to dopamine concentration, a straight line whose margin of error was narrow was earned.

Keywords

References

  1. Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Progress in Polymer Science 2011, 36(8), 981. https://doi.org/10.1016/j.progpolymsci.2011.02.001
  2. Casettari, L.; Vllasaliu D.; Castagnino E. Progress in Polymer Science 2012, 37(5), 659. https://doi.org/10.1016/j.progpolymsci.2011.10.001
  3. Sinha, V. R.; Singla, A. K.; Wadhawan, S.; Kaushik, R. International Journal of Pharmaceutics 2004, 274(1), 1. https://doi.org/10.1016/j.ijpharm.2003.12.026
  4. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Gurny, R. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57(1), 32.
  5. Guibal, E. Progress in Polymer Science 2005, 30(1), 71. https://doi.org/10.1016/j.progpolymsci.2004.12.001
  6. Pillai, C. K.; Paul, W.; Sharma, C. P. Progress in Polymer Science 2009, 34(7), 641. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  7. Mao, S.; Sun, W.; Kissel, T. Advanced Drug Delivery Reviews 2010, 62(1), 12. https://doi.org/10.1016/j.addr.2009.08.004
  8. Kumar, K. P.; Paul, W.; Sharma, C. P. Process Biochemistry 2011, 46(10), 2007. https://doi.org/10.1016/j.procbio.2011.07.011
  9. Rad, A. G.; Abbasi, H.; Afzali, M. H. Physics Procedia 2011, 22, 203. https://doi.org/10.1016/j.phpro.2011.11.032
  10. Song, J. Y.; Jang, H.; Kim, B. S. Process Biochemistry 2009, 44(10), 1133. https://doi.org/10.1016/j.procbio.2009.06.005
  11. Streszewski, B.; Jaworski, W.; Pac awski, K. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 397, 62.
  12. Fayaz, A. M.; Girilal, M.; Rahman, M. Process Biochemistry 2011, 46(10), 1958. https://doi.org/10.1016/j.procbio.2011.07.003
  13. Tanaka, K.; Miyake, Y.; Fukushima, W. Parkinsonism & Related Disorders 2011, 17(6), 446. https://doi.org/10.1016/j.parkreldis.2011.02.016
  14. Kiyohara, C.; Miyake, Y.; Koyanagi, M.; Fujimoto, T.; Shirasawa, S. Parkinsonism & Related Disorders 2010, 16(7), 447. https://doi.org/10.1016/j.parkreldis.2010.04.009
  15. Lewitt, P.; Shiez, L.; Auinger, P. Brain Research 2011, 1408, 88. https://doi.org/10.1016/j.brainres.2011.06.057
  16. Pankratz, N.; Pauciulo, M. W. Neuroscience Letters 2006, 408(3), 209. https://doi.org/10.1016/j.neulet.2006.09.003
  17. Qin, Z.; Zhang, L.; Sun, F.; Fang, X. Parkinsonism & Related Disorders 2009, 15(10), 767. https://doi.org/10.1016/j.parkreldis.2009.05.011
  18. Murakami, K.; Miyake, Y.; Sasaki, S. Nutrition 2010, 26(5), 515. https://doi.org/10.1016/j.nut.2009.05.021
  19. Miyake, Y.; Tsuboi, Y.; Koyanagi, M. Journal of the Neurological Sciences 2010, 297, 15. https://doi.org/10.1016/j.jns.2010.07.002
  20. Zhang, Z. Y.; Sun, F.; Liu, H. Clinical Neurology and Neurosurgery 2009, 111(9), 733. https://doi.org/10.1016/j.clineuro.2009.07.001
  21. Wang, Y. Q.; Ma, S.; Yang, Q. Q. Applied Surface Science 2012, 258(15), 5881. https://doi.org/10.1016/j.apsusc.2012.02.129
  22. Zhu, Y.; Dluhy, R. A.; Zhao, Y. Sensors and Actuators B: Chemical 2011, 157(1), 42. https://doi.org/10.1016/j.snb.2011.03.024
  23. Sanci, R.; Volkan, M. Sensors and Actuators B: Chemical 2009, 139(1), 150. https://doi.org/10.1016/j.snb.2008.10.033
  24. Tan, R. Z.; Agarwal, A.; Balasubramanian, N. Sensors and Actuators A: Physical 2007, 139(1), 36. https://doi.org/10.1016/j.sna.2006.11.010
  25. Cozar, I. B.; Szabo, L.; Mare, D.; Leopold, N. Journal of Molecular Structure 2011, 99(1), 243.
  26. Lucotti, A.; Zerbi, G. Sensors and Actuators B: Chemical 2007, 121(2), 356. https://doi.org/10.1016/j.snb.2006.03.050
  27. Panarin, A. Y.; Terekhov, S. N.; Kholostov, K. I. Applied Surface Science 2010, 256(23), 6969. https://doi.org/10.1016/j.apsusc.2010.05.008
  28. Kim, B. G.; Kang, I. J. Ultramicroscopy 2008, 108, 1168. https://doi.org/10.1016/j.ultramic.2008.04.038
  29. Lee, S. C.; Lee, S. W.; Kang, I. J. J. Surface Review and Letters 2010, 17, 165. https://doi.org/10.1142/S0218625X10013643

Cited by

  1. Gold nanoparticle based optical and electrochemical sensing of dopamine vol.182, pp.13-14, 2015, https://doi.org/10.1007/s00604-015-1609-2
  2. Surface enhanced Raman scattering-active worm-like Ag clusters for sensitive and selective detection of dopamine vol.7, pp.8, 2015, https://doi.org/10.1039/C4AY03061C
  3. Effect of solution pH on the self-polymerization behavior of 3,4-Dihydroxyphenylalanine vol.24, pp.10, 2016, https://doi.org/10.1007/s13233-016-4133-2
  4. Methods for determining neurotransmitter metabolism markers for clinical diagnostics vol.71, pp.12, 2016, https://doi.org/10.1134/S1061934816120108
  5. Recent advances in optical detection of dopamine using nanomaterials vol.184, pp.5, 2017, https://doi.org/10.1007/s00604-017-2183-6
  6. -Gold Nanoshells as an Anticancer Drug Delivery Carriers vol.38, pp.3, 2017, https://doi.org/10.1002/bkcs.11083
  7. BSA capped bi-functional fluorescent Cu nanoclusters as pH sensor and selective detection of dopamine vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03524A
  8. Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules vol.35, pp.1, 2013, https://doi.org/10.5012/bkcs.2014.35.1.25
  9. QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조 vol.54, pp.2, 2013, https://doi.org/10.9713/kcer.2016.54.2.200
  10. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis vol.9, pp.3, 2013, https://doi.org/10.1021/acschemneuro.7b00413
  11. Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism marker vol.2019, pp.6, 2019, https://doi.org/10.24075/brsmu.2018.077
  12. Recent Advances in Electrochemical and Optical Sensing of Dopamine vol.20, pp.4, 2013, https://doi.org/10.3390/s20041039
  13. Novel optimized biopolymer-based nanoparticles for nose-to-brain delivery in the treatment of depressive diseases vol.10, pp.48, 2020, https://doi.org/10.1039/d0ra04212a
  14. GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구 vol.58, pp.4, 2020, https://doi.org/10.9713/kcer.2020.58.4.541
  15. Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조 vol.59, pp.1, 2013, https://doi.org/10.9713/kcer.2021.59.1.21