DOI QR코드

DOI QR Code

Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology

  • Received : 2013.06.11
  • Accepted : 2013.08.22
  • Published : 2013.06.25

Abstract

Surface-enhanced Raman scattering (SERS) effect deals with the enhancement of the Raman scattering intensity by molecules in the presence of a nanostructured metallic surface. The first observation of surface-enhanced Raman spectra was in 1974, when Fleischmann and his group at the University of Southampton, reported the first high-quality Raman spectra of monolayer-adsorbed pyridine on an electrochemically roughened Ag electrode surface. Over the last thirty years, it has developed into a versatile spectroscopic and analytical technique due to the rapid and explosive progress of nanoscience and nanotechnology. This review article describes the recent development in field of surface-enhanced Raman scattering research, especially fabrication of various SERS active substrates, mechanism of SERS effect and its various applications in both surface sciences and analytical sciences.

Keywords

References

  1. Albrecht, M.G. and Creighton, J.A. (1977), "Anomalously intense Raman spectra of pyridine at a silver electrode", J. Am. Chem. Soc., 99, 5215-5217. https://doi.org/10.1021/ja00457a071
  2. Aroca, R.F. (2006), Surface enhanced vibrational spectroscopy, Wiley, Hoboken, NJ.
  3. Aroca, R.F., Goulet, P.J.G., Santos, D.S. dos, Alvarez-Puebla, R.A. and Oliveira, O.N. (2005), "Silver nanowire layer-by-layer films as substrates for surface enhanced raman scattering", Anal. Chem., 77, 378-382. https://doi.org/10.1021/ac048806v
  4. Esumi, K., Matsuhisa, K. and Torigoe, K. (1995), "Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template", Langmuir, 11, 3285-3287. https://doi.org/10.1021/la00009a002
  5. Fan, F.R., Attia, A., Sur, U.K., Chen, J.B. Xie, Z.X., Li, J.F., Ren, B. and Tian, Z.Q. (2009), "An effective strategy for room-temperature synthesis of single-crystalline palladium nanocubes and nanodendrites in aqueous solution", Cryst. Growth Des., 9, 2335-2340. https://doi.org/10.1021/cg801231p
  6. Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G. and Natan, M.J. (1995), "Self-assembled metal colloid monolayers: an approach to SERS substrates", Science, 267,1629-1632. https://doi.org/10.1126/science.267.5204.1629
  7. Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1974), "Raman-spectra of pyridine adsorbed at a silver electrode", Chem. Phys. Lett., 26, 163-166. https://doi.org/10.1016/0009-2614(74)85388-1
  8. Fleischmann, M., Hendra, P.J. and McQuillan, A.J. (1973), "Raman spectra from electrode surface", J. Chem. Soc. Chem. Commn., 80-81.
  9. Haynes, C.L. and Van Duyne, R.P. (2001), "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics", J. Phys.Chem. B., 105, 5599-5611. https://doi.org/10.1021/jp010657m
  10. Hu, J.Q., Chen, Q., Xie, Z.X., Han, G.B., Wang, R.H. and Ren, B. (2004), "A simple and effective route for the synthesis of crystalline silver nanorods and nanowires", Adv. Funct. Mater., 14, 183-189. https://doi.org/10.1002/adfm.200304421
  11. Huang, C.J., Chiu, P.H., Wang, Y.H., Chen, W.R. and Mee, T.H. (2006), "Synthesis of the gold nanocubes by electrochemical technique", J. Electrochem. Soc., 153, D129-D133. https://doi.org/10.1149/1.2203931
  12. Hulteen, J.C. and Martin, C.R. (1997), "A general template-based method for the preparation of nanomaterials", J. Mater. Chem., 7, 1075-1087. https://doi.org/10.1039/a700027h
  13. Jeanmaire, D.L. and Van Duyne, R.P. (1977), "Surface Raman electrochemistry part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode", J. Electroanal. Chem., 84, 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6
  14. Kim, D., Park, J., An, K., Yang, N.K., Park, J.G. and Hyeon, T. (2007), "Synthesis of hollow iron nanoframes", J. Am. Chem. Soc., 129, 5812-5813. https://doi.org/10.1021/ja070667m
  15. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R. and Field, M.S. (1997), "Single molecule detection using surface-enhanced Raman scattering (SERS)", Phys. Rev. Lett., 78, 1667-1670. https://doi.org/10.1103/PhysRevLett.78.1667
  16. Le Ru, E.C. and Etchegoin, P.G. (2009), Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, Amsterdam, Boston.
  17. Li, J.F. et al. (2010), "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464, 392-395. https://doi.org/10.1038/nature08907
  18. Lin, T.T., Lin, Y.H., Hung, C.S. Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, D.W., Wang, J.K., Wang, Y.L. and Lin, C.H. (2009), "A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall", PLoS ONE, 4, 1-9. https://doi.org/10.1371/journal.pone.0005361
  19. Liao, P.F. and Wokaun, A. (1982), "Lightning rod effect in surface enhanced Raman scattering", J. Chem. Phys., 76, 751-752. https://doi.org/10.1063/1.442690
  20. Moskovits, M. (1978), "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals", J. Chem. Phys., 69, 4159-4161. https://doi.org/10.1063/1.437095
  21. Mulvihill, M., Tao, A., Benjauthrit, K., Arnold, J. and Yang, P. (2008), "Surface-enhanced Raman spectroscopy for trace arsenic eetection in contaminated water", Angew. Chem. Int. Ed., 47, 6456-6460. https://doi.org/10.1002/anie.200800776
  22. Nie, S. and Emory, S. R. (1997), "Probing single molecules and single nanoparticles by surface enhanced Raman scattering", Science, 275, 1102-1106. https://doi.org/10.1126/science.275.5303.1102
  23. Orendorff, C.J., Gole, A., Sau, T.K. and Murphy, C.J. (2005), "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence", Anal. Chem., 77, 3261-3266. https://doi.org/10.1021/ac048176x
  24. Pande, S., Chowdhury, J. and Pal, T. (2011), "Understanding the enhancement mechanisms in the surface-enhanced Raman spectra of the 1, 10-phenanthroline molecule adsorbed on a Au@Ag bimetallic nanocolloid", J. Phys. Chem. C., 115, 10497-10509. https://doi.org/10.1021/jp202197h
  25. Pettinger, B., Ren, B., Picardi, G., Schuster, R. and Ertl, G. (2004), "Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy", Phys. Rev. Lett., 92, 096101-096104. https://doi.org/10.1103/PhysRevLett.92.096101
  26. Raman, C.V. and Krishnan, K.S. (1928), "A new type of secondary radiation", Nature, 121, 501-501.
  27. Shafer-Peltier, K.E., Haynes, C.L., Glucksberg, M.R. and Van Duyne, R.P. (2003), "Toward a glucose biosensor based on surface-enhanced Raman scattering", J. Am. Chem. Soc., 125, 588-593. https://doi.org/10.1021/ja028255v
  28. Shankar, S.S., Rai, A. Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004), "Biological synthesis of triangular gold nanoprisms", Nat. Mater., 3, 482-488. https://doi.org/10.1038/nmat1152
  29. Tao, A., Kim, F., Hess, C., Goldberger, J., He, R.R., Sun, Y.G., Xia, Y.N. and Yang, P.D. (2003), "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopya", Nano Lett., 3, 1229-1233. https://doi.org/10.1021/nl0344209
  30. Tian, Z.Q., Ren, B. and Wu, D.Y. (2002), "Surface-Enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures", J. Phys. Chem. B, 106, 9463-9483. https://doi.org/10.1021/jp0257449
  31. Wang, H.H., Liu, C.Y., Wu, S.B., Liu, N.W., Peng, C.Y., Chan, T.H., Hsu, C.F., Wang, J.K. and Wang, Y.L. (2006), "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps", Adv. Mater., 18, 491- 495. https://doi.org/10.1002/adma.200501875
  32. Wang, A., Huang, Y.F., Sur, U.K., Wu, D.Y., Ren, B., Rondinini, S., Amatore, C. and Tian, Z.Q. (2010), "In Situ identification of intermediates of Benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations", J. Am. Chem. Soc., 13, 9534-9536.
  33. Willets, K.A. and Van Duyne, R.P. (2007), "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

Cited by

  1. A facile and transfer-free path for template-less synthesis of carbon nanosheets vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.127
  2. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications vol.18, pp.11, 2016, https://doi.org/10.1088/2040-8978/18/11/115003
  3. Surface-Enhanced Raman Scattering on Chemically Etched Copper Surface: An Upper-Level Spectroscopic Measurement and Analysis vol.97, pp.2, 2013, https://doi.org/10.1021/acs.jchemed.9b00706
  4. Detection of Mycotoxins in Food Using Surface-Enhanced Raman Spectroscopy: A Review vol.4, pp.1, 2021, https://doi.org/10.1021/acsabm.0c01349