DOI QR코드

DOI QR Code

Feasibility Study for the Monitoring of Urea in Dialysate Solution using Raman Spectroscopy

  • Kim, Jae-Jin (Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University) ;
  • Hwang, Jin-Young (Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University) ;
  • Kim, Yong-Dan (Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University) ;
  • Chung, Ho-Eil (Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University)
  • Received : 2010.10.22
  • Accepted : 2010.12.26
  • Published : 2011.03.20

Abstract

We have determined the urea concentration in an aqueous solution using Raman spectroscopy by incorporating a Teflon tube as an effective intensity correction standard as well as sample container. A non-overlapping Teflon band was used as the reference peak to correct Raman intensity variations that occasionally resulted from changes in laser power. To increase the sensitivity, we positioned a copper reflector inside the Teflon tube to maximize the collection of Raman scattering. The obtained accuracy using Raman spectroscopy was 0.53 mM, close to the range of accuracy of previous NIR studies (0.15-0.52 mM).

Keywords

References

  1. Eddy, C. V.; Arnold, M. A. Clin. Chem. 2001, 47, 1279.
  2. Eddy, C. V.; Flanigan, M.; Arnold, M. A. Appl. Spectrosc. 2003, 57, 1230. https://doi.org/10.1366/000370203769699081
  3. Olesberg, J. T.; Arnold, M. A.; Flanigan, M. Clin. Chem. 2004, 50, 175. https://doi.org/10.1373/clinchem.2003.025569
  4. Cho, D. S.; Olesberg, J. T.; Flanigan, M.; Arnold, M. A. Appl. Spectrosc. 2008, 62, 866. https://doi.org/10.1366/000370208785284411
  5. Jensen, P. S.; Bak, D.; Ladefoged, S.; Andersson-Engels, S. Spectrochim. Acta Part A 2004, 60, 899. https://doi.org/10.1016/S1386-1425(03)00317-2
  6. Jensen, P. S.; Bak, D.; Ladefoged, S.; Andersson-Engels, S.; Friis-Hansen, L. J. Biomed. Opt. 2004, 9, 553. https://doi.org/10.1117/1.1689337
  7. Hazen, K. H.; Arnold, M. A.; Small, G. W. Appl. Spectrosc. 1994, 48, 477. https://doi.org/10.1366/000370294775268910
  8. Beebe, K. R.; Pell, R. J.; Seasholtz, M. B. Chemometrics: A Practical Guide; John Wiley and Sons: 1998.
  9. Womble, E. M.; Clarke, R. H. US Pat. 0204634A1, 2004.
  10. Premasiri, R. W.; Clarke, R. H.; Womble, E. M. Lasers Surg. Med. 2001, 28, 330. https://doi.org/10.1002/lsm.1058
  11. Kim, M.; Chung, H.; Woo, Y.; Kemper, M. Anal. Chim. Acta 2006, 49, 579.
  12. Nah, S.; Kim, D.; Chung, H.; Han, S. H.; Yoon, M. Y. J. Raman Spectrosc. 2007, 38, 475. https://doi.org/10.1002/jrs.1667
  13. Keuleers, R.; Desseyn, H. O.; Rousseau, B.; Van Alsenoy, C. J. Phys. Chem. 1999, 103, 4621. https://doi.org/10.1021/jp984180z
  14. Kim, D.; Chung, H.; Kim, N. Appl. Spectrosc. 2007, 61, 447. https://doi.org/10.1366/000370207780466235

Cited by

  1. Wide area coverage Raman spectroscopy for reliable quantitative analysis and its applications vol.138, pp.12, 2013, https://doi.org/10.1039/c3an36843b
  2. Hemodialysis monitoring using mid- and near-infrared spectroscopy with partial least squares regression vol.11, pp.7, 2018, https://doi.org/10.1002/jbio.201700365
  3. Influence of interfering co-appearing container peaks on the accuracy of direct quantitative Raman measurement of a sample in a plastic container vol.145, pp.16, 2011, https://doi.org/10.1039/d0an00741b