• Title/Summary/Keyword: Ralstonia

Search Result 182, Processing Time 0.025 seconds

Detection of the Causal Agent of Bacterial Wilt, Ralstonia solanacearum in the Seeds of Solanaceae by PCR (가지과 종자에서 Ralstonia solanacearum의 검출을 위한 PCR 방법)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.184-190
    • /
    • 2011
  • Ralstonia solanacearum, a causal agent of bacterium wilt is very difficult to control once the disease becomes endemic. Thus, Ralstonia solanacearum is a plant quarantine bacterium in many countries including Korea. In this study, we developed PCR assays, which can detect Ralstonia solanacearum from the Solanaceae seeds. Primers RS-JH-F and RS-JH-R amplified specifically a 401 bp fragment only from Ralstonia solanacearum race 1 and race 3. The nested PCR primers, RS-JH-F-ne and RS-JH-R-ne that were designed inside of 1st PCR amplicon amplified specifically a 131 bp fragment only from Ralstonia solanacearum race 1 and race 3. The primers did not amplify any non-specific DNA from the seed extracts of the Solanaceae including tomato and pepper. When detection sensitivity were compared using the Solanaceae seeds inoculated with target bacteria artificially, the nested PCR method developed in this study 100 times more sensitive than ELISA and selective medium. Therefore, we believe that the PCR assays developed in this work is very useful to detect Ralstonia solanacearum in the Solanaceae seeds.

A Study on the Ralstonia Solanacearum Inactivation using Improved Plasma Process (개선된 플라즈마 공정을 이용한 Ralstonia Solanacearum 불활성화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 2014
  • Effect of improvement of the dielectric barrier discharge (DBD) plasma system on the inactivation performance of bacteria were investigated. The improvement of plasma reactor was performed by combination with the basic plasma reactor and UV process or combination with the basic plasma reactor and circulation system which was equipped with gas-liquid mixer. Experimental results showed that tailing effect was appeared after the exponential decrease in basic plasma reactor. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of basic plasma process and UV process. The application of gas-liquid mixing device on the basic plasma reactor reduced inactivation time and led to complete sterilization. The effect existence of gas-liquid mixing device, voltage, air flow rate (1 ~ 5 L/min), water circulation rate (2.8 ~ 9.4 L/min) in gas-liquid mixing plasma, plasma voltage and UV power of gas-liquid mixing plasma+UV process were evaluated. The optimum air flow rate, water circulation rate, voltage of gas-liquid mixing system were 3 L/min, 3.5 L/min and 60 V, respectively. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of gas-liquid mixing plasma and UV process.

Characteristics of Polyhydroxyalkanoates Synthesis by Ralstonia eutropha from Vegetable Oils (식물성 오일로부터 Ralstonia eutropha의 polyhydroxyalkanoates 합성 특성)

  • Park, Dae-Hoo;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.239-243
    • /
    • 2010
  • Six strains of Ralstonia eutropha were grown to investigate characteristics of polyhydroxyalkanoates (PHA) synthesis from vegetable oils or glycerol. Poly(3-hydroxybutyrate) homopolymer was formed using soybean oil, olive oil, or glycerol as carbon source, while poly(3-hydroxybutyrate-co-4-hydroxybutyrate) or poly(3-hydroxybutyrateco-3-hydroxyvalerate) copolymers were synthesized by co-feeding $\gamma$-butyrolactone or pentanoic acid, respectively. Optimum strain was determined as R. eutropha KCTC 2662 in terms of final cell concentration and PHA content. From 20 g/L of soybean oil (optimum substrate), cell concentration and PHA content at 72 h ranged 1.7~9.2 g/L and 70~92 wt%, respectively.

Role of Trehalose Synthesis in Ralstonia syzygii subsp. indonesiensis PW1001 in Inducing Hypersensitive Response on Eggplant (Solanum melongena cv. Senryo-nigou)

  • Laili, Nur;Mukaihara, Takafumi;Matsui, Hidenori;Yamamoto, Mikihiro;Noutoshi, Yoshiteru;Toyoda, Kazuhiro;Ichinose, Yuki
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.566-579
    • /
    • 2021
  • Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

Monitoring Expression of bphC Gene from Ralstonia eutropha H85O Induced by Plant Terpenes in Soil

  • Jung, Kyung-Ja;Kim, Byung-Hyuk;Kim, Eungbin;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.340-343
    • /
    • 2002
  • A PCB degrader, Ralstonia eutropha H850 was shown to induce bphC gene encoding 2,3-dihydroxy-biphenyl-1,2-dioxygenase in a carvone-amended pure culture in our previous study (Park et al.,1999). The present study was carried out to examine how plant terpenes, as natural substrates, would cause an expression of a PCB degradative gene in soil that was amended with terpenes. The population of Ralstonia eutropha H850 was maintained at least around 10$\^$8/ (CFU/g fresh soil) in the soil amended with carvone or limonene in the presence of succinate as a growth substrate at 50 th day. The gene expression was monitored by RT-PCR using total RNA directly extracted from each soil and bphC gene primers. The bphC gene expression of the seeded strain H850 was observed in the soil amended with biphenyl (4 days) but not with succinate, carvone and limonene. These results indicate that terpenes widely distributed in nature could be a potential inducing substrate for effective PCB biodegration in the soil but their bioavailability and specific induction behavior should be taken into account before PCB bioremediation implementation.

PCR-based Specific Detection of Ralstonia solanacearum by Amplification of Cytochrome c1 Signal Peptide Sequences

  • Kang, Man-Jung;Lee, Mi-Hee;Shim, Jae-Kyung;Seo, Sang-Tae;Shrestha, Rosemary;Cho, Min-Seok;Hahn, Jang-Ho;Park, Dong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1765-1771
    • /
    • 2007
  • A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.

Inactivation of Ralstonia Solanacearum using Filtration-Plasma Process (여과-Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1165-1173
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor in nutrient solution culture, a filtration-DBD (dielectric barrier discharge) plasma reactor was investigated for the Ralstonia solanacearum which causes bacterial wilt in aquiculture. The filtration-DBD plasma reactor system of this study was consisted of filter, plasma reactor, reservoir. The DBD plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the inactivation of R. solanacearum with filter media type in filter reactor ranked in the following order: anthracite > fiber ball > sand > ceramic ball > quartz ceramic. In filtration + plasma process, disinfection effect with the voltage was found to small. In disinfection time of 120 minutes, residual R. solanacearum concentration was 1.17 log (15 CFU/mL). When the continuous disinfection time was 120 minute, disinfection effect was thought to keep the four days. In sporadic operation mode of 30 minutes disinfection - 24 hours break, residual R. solanacearum concentration after five days was 0.3 log (2 CFU/mL). It is considered that most of R. solanacearum has been inactivated substantially.

Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea (고추에서 분리된 Ralstonia solanacearum 계통의 생리, 생화학 및 유전적 특성)

  • Lee, Young Kee;Kang, Hee Wan
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang) and tomato (cv. Seogwang) seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR). All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27%) and biovar 4 (73%). Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR), the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.