Browse > Article

PCR-based Specific Detection of Ralstonia solanacearum by Amplification of Cytochrome c1 Signal Peptide Sequences  

Kang, Man-Jung (National Institute of Agricultural Biotechnology, Rural Development Administration)
Lee, Mi-Hee (National Institute of Agricultural Biotechnology, Rural Development Administration)
Shim, Jae-Kyung (National Institute of Agricultural Biotechnology, Rural Development Administration)
Seo, Sang-Tae (Korea Forest Research Institute)
Shrestha, Rosemary (Central Department of Botany, Tribhuvan University)
Cho, Min-Seok (National Institute of Agricultural Biotechnology, Rural Development Administration)
Hahn, Jang-Ho (National Institute of Agricultural Biotechnology, Rural Development Administration)
Park, Dong-Suk (National Institute of Agricultural Biotechnology, Rural Development Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1765-1771 More about this Journal
Abstract
A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.
Keywords
Ralstonia solanacearum; PCR; bacterial wilt; cytochrome c1 signal peptide; detection; diagnosis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Dittapongpitch, V. and S. Surat. 2003. Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J. Phytopathol. 151: 239-246   DOI   ScienceOn
2 Granada, G. A. and L. Sequeira. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67: 1084-1088   DOI
3 Hayward, A. C., H. M. El-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280   DOI
4 Ito, S., Y. Ushijima, T. Fujii, S. Tanaka, M. Kameya-Iwaki, S. Yoshiwara, and F. Kishi. 1998. Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and a PCR technique. J. Phytopathol. 146: 379-384   DOI   ScienceOn
5 Schierwater, B. and A. Ender. 1993. Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21: 4647-4648   DOI
6 Seal, S. E., L. A. Jackson, J. P. W. Young, and M. J. Daniels. 1993. Differentiation of P. solanacearum, P. syzygii, P. pickettii and the blood disease bacterium by partial 16S rRNA sequencing: Construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J. Gen. Microbiol. 139: 1587-1594   DOI   ScienceOn
7 Van Elsas, J. D., P. Kastelein, P. van Bekkum, J. M. van der Wolf, P. M. de Vries, and L. S. van Overbeek. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90: 1358-1366   DOI   ScienceOn
8 Weller, S. A., J. G. Elphinstone, N. C. Smith, N. Boonham, and D. E. Stead. 2000. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 66: 2853-2858   DOI
9 van der Wolf, J. M., P. J. van Bekkum, J. D. van Elsas, E. H. Nijhuis, S. G. C. Vriend, and M. A. Ruissen. 1998. Immunofluorescence colony-staining and selective enrichment in liquid medium for studying the population dynamics of Ralstonia (Pseudomonas) solanacearum (race 3) in soil. EPPO Bull. 28: 71-79   DOI
10 Seal, S. E., L. A. Jackson, and M. J. Daniels. 1992. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758
11 Atlas, R. M. 2004. Handbook of Microbiological Media, 3rd Ed. CRC Press
12 Bassam, B. J., G. Caetano-Anolles, and P. M. Gresshoff. 1992. DNA amplification fingerprinting of bacteria. Appl. Microbiob. Biotechnol. 38: 70-76
13 Elphinstone, J. G., J. Hennessy, J. K. Wilson, and D. E. Stead. 1996. Sensitivity of different methods for the detection of Pseudomonas solanacearum (Smith) in potato tuber extracts. EPPO Bull. 26: 663-678   DOI   ScienceOn
14 Hayward, A. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27: 265-277   DOI
15 Pradhanang, P. M., J. G. Elphinstone, and R. T. V. Fox. 2000. Sensitive detection of Ralstonia solanacearum in soil: A comparison of different detection techniques. Plant Pathol. 49: 414-422   DOI   ScienceOn
16 Schonfeld, J., H. Heuer, J. D. van Elsas, and K. Smalla. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69: 7248-7256   DOI
17 Ward, L. J. and S. H. De Boer. 1994. Specific detection of Erwinia carotovora subsp. atroseptica with a digoxigeninlabeled DNA probe. Phytopathology 84: 180-186   DOI
18 Park, Y. J., B. M. Lee, J. H. Hahn, G. B. Lee, and D. S. Park. 2004. Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequence. Microbiol. Res. 159: 419-423   DOI   ScienceOn
19 Mehta, T., M. V. Coppi, S. E. Childers, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634-8641   DOI   ScienceOn
20 Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695
21 Janse, J. D., F. A. X. Araluppan, J. Schans, M. Wenneker, and W. Westerhuis. 1998. Experiences with bacterial brown rot Ralstonia solanacearum biovar 2, race 3, in The Netherlands, pp. 146-154. In P. Prior, C. Allen, and J. Elphinstone (eds.), Bacterial Wilt Disease - Molecular and Ecological Aspects. Springer-Verlag, Berlin, Germany
22 Buddenhagen, I. and A. Kelman. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2: 203-230   DOI   ScienceOn
23 Boudazin, G., A. C. Le Roux, K. Josi, P. Labarre, and B. Jouan. 1999. Design of division specific primers of Ralstonia solanacearum and application to the identification of European isolates. Eur. J. Plant Pathol. 105: 373-380   DOI
24 Rasmussen, O. F. and J. C. Reeves. 1992. DNA probes for the detection of plant pathogenic bacteria. J. Biotechnol. 25: 203-220   DOI   ScienceOn
25 Caruso, P., M. T. Gorris, M. Cambra, J. L. Palomo, J. Collar, and M. M. Lopez. 2002. Enrichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asymptomatic potato tubers. Appl. Environ. Microbiol. 68: 3634-3638   DOI
26 Kim, S., H. Lim, W. Lee, I. Hwang, G. Woo, and S. Ryu. 2006. PCR-based detection and molecular genotyping of enterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16: 291-294   과학기술학회마을
27 Pegg, K. and M. Moffett. 1971. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust. J. Exp. Agric. Anim. Husb. 11: 696-698   DOI
28 Park, J. H., H. K. Park, B. C. Kang, E. S. Song, H. J. Jang, and C. M. Kim. 2006. Development of genus- and speciesspecific probe design system for pathogen detection based on 23S rDNA. J. Microbiol. Biotechnol. 16: 740-747   과학기술학회마을
29 van der Wolf, J. M., S. G. C. Vriend, P. Kastelein, E. H. Nijhuis, P. J. van Bekkum, and J. W. L. van Vuurde. 2000. Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur. J. Plant Pathol. 106: 123-133   DOI   ScienceOn
30 Hayward, A. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria, pp. 127-135. In G. L. Hartman and A. C. Hayward (eds.), Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum. CAB International, Oxford, England
31 Park, D. S., J. K. Shim, J. S. Kim, B. Y. Kim, M. J. Kang, Y. J. Seol, J. H. Hahn, R. Shrestha, C. K. Lim, S. J. Go, and H. G. Kim. 2006. PCR-based sensitive and specific detection of Pectobacterium atrosepticum using primers based on Rhs family gene sequences. Plant Pathol. 55: 625-629   DOI   ScienceOn
32 Lee, Y. A. and C. C. Wang. 2000. The design of specific primers for the detection of Ralstonia solanacearum in soil samples by polymerase chain reaction. Bot. Bull. Acad. Sin. 41: 121-128