• Title/Summary/Keyword: Rake receivers

Search Result 17, Processing Time 0.018 seconds

Performance Evaluation of DS-CDMA Communication Systems using Chip Waveform Shaping (칩 파형 형성을 이용한 DS-CDMA 통신시스템 성능분석)

  • 장문섭;이정재
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.65-68
    • /
    • 2001
  • In this paper a CI(carrier interferometry) chip waveform shaping scheme which Is made up of orthogonal carriers equally spaced in frequency, and used to introduce frequency diversity benefits into DS-CDMA, is considered. A new communication scheme referred to as CI/DS-CDMA using CI chip shaping, is introduced. Through the performance evaluation of CI/DS-CDMA systems in a typical frequency selective fading channel environment, it is shown that the frequency diversity benefits of this system results in significant performance enhancements relative to traditional DS-COMA with RAKE receivers using the path diversity.

  • PDF

Efficient Receiver Design Based On Block-Coded Correlator Scheme for UWB-IR (무선광대역 시스템을 위한 블록 부호화 상관기 기반의 효율적인 수신기 설계 기법)

  • Min, Seungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7582-7588
    • /
    • 2015
  • Noncoherent receivers are favored for block-code-modulated ultrawideband impulse radio (UWB-IR) systems because of their low implementation complexity compared with coherent rake receivers. However, existing noncoherent schemes, such as transmitted reference (TR) systems and averaged differential receivers (ADR), suffer from performance degradation and energy efficiency loss. Codeword matching and signal aggregation (CMSA) is a low complexity noncoherent receiver for UWB-IR. As the frame/symbol duration is shortened to boost data rate, interframe interference (IFI) or intersymbol interference (ISI) occurs and degrades the detection performance of CMSA. In this paper, block coded correlator which consists of the delay components and the reference signal is proposed to improve the performance of the receiver. Simulation results show that the proposed system leads to the better performance compared to the conventional CMSA receiver.

Performance Analysis of UWB Systems in the Presence of Timing Jitter

  • Guvenc, Ismail;Arslan, Huseyin
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2004
  • In this paper, performances of different ultra-wideband (UWB) modulation schemes in the presence of timing jitter are evaluated and compared. Static and Rayleigh fading channels are considered. For fading channels, Oat and dispersive channels are assumed. First, bit error rate (BER) performances for each case are derived for a fixed value of timing jitter. Later, a uniform distribution of jitter is assumed to evaluate the performance of the system, and the theoretical results are verified by computer simulations. Finger estimation error is treated as timing jitter and an appropriate model is generated. Furthermore, a worst case distribution that provides an upper bound on the system performance is presented and compared with other distributions. Effects of timing jitter on systems employing different pulse shapes are analyzed to show the dependency of UWB performance on pulse shape. Although our analysis assumes uniform timing jitter, our framework can be used to evaluate the BER performance for any given probability distribution function of the jitter.

Block Coded Modulation with a Modified Block Structure for UWB-Impulse Radio (초광대역 임펄스 라디오을 위한 변형된 블록 구조를 이용한 블록부호 변조 방식)

  • Min, Seungwook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1765-1767
    • /
    • 2016
  • Non-coherent UWB receivers are promising due to the low hardware complexity while the coherent receiver such as the rake receiver requires the complex hardware to estimate channel characteristics and get the synchronization. In this letter, the block coded modulation scheme as one of the most promising method is enhanced in terms of the performance. The performance enhancement is carried out by the modification of the block structure with unequal frame length for each pulse. Simulation results show that the proposed method has the performance enhancement by the transmission rate or bit error rate.

An Improvement on Multicode CDMA Systems Using a Convolutional Code and a Bi-Orthogonal Code (길쌈 부호와 이원 직교 부호에 의한 다중부호 부호분할 다원접속 시스템의 개선)

  • 김기범;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1659-1666
    • /
    • 1998
  • The multicode CDMA systems that are widely studied as an effective transmission methodology in the IMT-2000 systems, employ orthogonal codes to transform high rate data into parallel, low rate data for simultaneous transmission. In this paper, we propose a new multicode CDMA system which achieves the same data rate and processing gain of the conventional systems, while significantly improves bit error rate performance by exploiting a convolutional code with code rate r=1/2 and a bi-orthogonal code. The simulation results for synchronous systems using maximal ratio combining Rake receivers under additive white Gaussian noise and multi-path fading channels, show significant improviements by the proposed system.

  • PDF

The Bandwidth Efficiency Increasing Method and Performance Evaluation of Binary Input MC-CDMA (Binary Input MC-CDMA 전송방식의 대역효율증대방안 및 성능분석)

  • 오정열;임명섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.319-328
    • /
    • 1999
  • It is necessary to devise the method for increasing bandwidth efficiency in order to provide the high speed mobile multi-media communication services with CDMA under the limited radio bandwidth resources. In this paper the structure for transmitting the high speed data at the half bandwidth of the required bandwidth using the symmetry property of the IFFT output of the binary input MC-CDMA, which enables the time scaling method utilized, is proposed. The processing gain is increased 4 times than the DS-CDMA and its performance is evaluated as better than DS-CDMA with rake receivers under the Rayleigh fading channel and same bandwidth per one channel.

  • PDF

Performance Improvement Techniques for a DS-UWB System (DS-UWB 시스템의 성능 향상 기법)

  • Park Joong-Hoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.674-681
    • /
    • 2006
  • In this paper, a new receiver with low complexity for a DS-UWB system which can eliminate efficiently the multiple access interference and the detrimental effects caused by multi-paths is proposed. The performance of conventional DS-UWB receivers depends greatly on the types and lengths of spreading codes. Generally, as the length of spreading codes increases, the receiver performance improves. But, the receiver performance does not improve satisfactorily in a multi-paths fading environment. Through computer simulations, it can be shown that the proposed DS-UWB receiver eliminate the multi-paths effects efficiently in a multi-user, multi-paths fading environment, and the user capacity can be increased dramatically using the proposed receiver.