• Title/Summary/Keyword: Rainfall protection

Search Result 95, Processing Time 0.026 seconds

Characteristics of Rainfall Protection for Stacks (굴뚝의 우수유입방지 특성)

  • Kim, Jong-Chul;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.18-31
    • /
    • 2000
  • A stack must be designed to 1) reduce or eliminate rainfall or snowfall into a industrial exhaust system, 2) minimize a resistance to flow, 3) maximize the vertical dispersion of the contaminated air and 4) minimize maintenance. The weather cone stacks and the elbow-type stacks are very popular in Korea. But they add some resistance to the exhaust system resulting in reduction of air flow rate, but also deflect the noxious contaminants downward in undiluted form. To solve these problems, ACGIH (American Conference of Governmental Industrial Hygienists) suggested the vertical discharge stack with concentric space between the upper stack with larger diameter and the lower stack with smaller diameter. The preliminary test showed that the vertical discharge stacks did not have the good rainfall protection. The reversed cone were newly devised to satisfy the requirements for the good stack. Subsequently, the amount of rain being penetrated through the stacks was measured while the stacks were simultaneously and naturally exposed to rain in the same area outside. Test results indicate that none of the stacks tested completely exclude rain. The efficiency of rainfall protection and the pressure loss coefficient were compared. The temporary conclusion was reached to the point that the reversed cone stack is the best one. Further research is underway.

  • PDF

A Study on determining Flood Protection Elevation in Urban Area (도시지역 방어침수위 설정에 관한 연구)

  • Shin, Sang-Young;Lee, Yang-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.649-652
    • /
    • 2008
  • In urban area, flood risk is getting higher because of inland flood risk has grown up by changing rainfall intensity, rainfall pattern, changing land use and so on. Urban area is needed higher flood protection level to protect accumulated people, buildings and other infrastructures. However, even though former flood protection has focused on overflow from river, there is not a guide line for evaluating proper flood protection level. Thus, it is necessary to protect flood from inland flooding as well as overflow from river and need a proper method to evaluating flood protection level. This study present a method of determining flood protection elevation by using GIS tools for deciding proper flood protection level. The study result may contribute to urban flood protection measures in which inland flood risk increases.

  • PDF

LONG-TERM STREAMFLOW SENSITIVITY TO RAINFALL VARIABILITY UNDER IPCC SRES CLIMATE CHANGE SCENARIO

  • Kang, Boo-sik;Jorge a. ramirez, Jorge-A.-Ramirez
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.81-99
    • /
    • 2004
  • Long term streamflow regime under virtual climate change scenario was examined. Rainfall forecast simulation of the Canadian Global Coupled Model (CGCM2) of the Canadian Climate Center for modeling and analysis for the IPCC SRES B2 scenario was used for analysis. The B2 scenario envisions slower population growth (10.4 billion by 2010) with a more rapidly evolving economy and more emphasis on environmental protection. The relatively large scale of GCM hinders the accurate computation of the important streamflow characteristics such as the peak flow rate and lag time, etc. The GCM rainfall with more than 100km scale was downscaled to 2km-scale using the space-time stochastic random cascade model. The HEC-HMS was used for distributed hydrologic model which can take the grid rainfall as input data. The result illustrates that the annual variation of the total runoff and the peak flow can be much greater than rainfall variation, which means actual impact of rainfall variation for the available water resources can be much greater than the extent of the rainfall variation.

  • PDF

Study on Slope Prevention Effect of Eco-environmental Riprap Structure (친환경 호안구조물의 사면보호 효과에 관한 연구)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.47-51
    • /
    • 2009
  • The slope failure in the country is caused by mainly rainfall and its type is reported shallow slope failures in general. To investigate the cause of slope failure, the unsaturated soil slope behavior in accordance with rainfall amount studies actively, but there are little studies related the slope erosion and scour by rainfall. The slope erosion and scour by rainfall cause environmental pollution and slope instability, however there are few methods to effectively control them. This research analyzed experimentally how infinite gradients are infiltrated according to the changes of amount of rainfall and the slope of gradients by manufacturing the model of gradient in order to investigate how rainfall infiltrates regarding homogeneous gradients and slope protection method. For this, this experiment measured and analyzed discharge, storage rate occurring in gradients by going on changing amount of rainfall, slope of gradients.

  • PDF

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF

A numerical study on the ventilation characteristics of rainfall in road tunnel (강우변화를 고려한 도로터널의 환기특성에 관한 수치해석)

  • Lee, Ho-Hyung;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2015
  • When rainfall occurred on road tunnel, that is likely to have influence upon ventilation force in the tunnels but the tunnels ventilation system did not consider factors of rainfall. Thus, this study investigated effects of rainfall upon ventilation force in the tunnels at no rainfall and changing of rainfall by 3 dimensional numerical method. Flow rate into road tunnels decreased as many as 52.34% at rainfall of 150 mm/hr, and pressure drop of road tunnel between entrance and exit decreased as many as 22.22%, so that rainfall had influence upon ventilation force in the tunnel. The number of necessary jet fan in road tunnels is 12 at no rainfall but, when rainfall of 80 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 16, when rainfall of 150 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 17. So, factor of rainfall should be considered at estimation of ventilation system of road tunnel.

Spatial Distribution and Casual Causes of Shallow Landslides in Jinbu Area of Korea

  • Park, Jin Woo;Choi, Byoung Koo;Kim, Myung Hwan;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In temperate monsoon regions, extensive shallow landslides triggered by heavy rainfall are recurrent phenomena in mountainous areas. 1,357 landslides over Jinbu area, Korea that totaled 127 km2 were identified from aerial photographs and field survey. We examined characteristics of rainfall-induced shallow landslides and casual factors affecting landslide distribution with respect to topographic and forest settings, and land use. Most landslides occurred in the study area were the results of a complex combination of precondition, preparatory factors and triggering factors. Cumulative rainfall and high intensity rainfall during short period of time made the study area very sensitive to landslides and played as catalysts to enable other factors including topographic and forest settings, and land use to act more effectively. In addition, some landslides at lower elevation involved channel incision or bank erosion influenced by land use changes such as deforestation and intensification of agriculture surrounding riparian forests or hillslopes. The results suggest that most of landslide were triggered by heavy rainstorms while topographic, forest settings, and land use affected landslide distribution occurred in the study area.

Effects of Monsoon Rainfalls on Surface Water Quality in a Mountainous Watershed under Mixed Land Use (토지이용이 다변화된 산림 유역의 수질에 미치는 몬순 강우의 영향)

  • Jo, Kyeong-Won;Lee, Hyun-Ju;Park, Ji-Hyung;Owen, Jeffrey S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.197-206
    • /
    • 2010
  • To provide baseline information essential for assessing environmental impacts of monsoon rainfalls in a mountainous watershed under mixed land use, we investigated spatiotemporal variations in water quality using a combined approach of seasonal water quality survey and intensive storm samplings. Biannual water sampling at nine locations encompassing major land use types showed generally lower electrical conductivity and Cl- concentrations during the typical wet period compared to the dry period, indicating rainfall-induced dilution of dissolved ions. Total metal concentrations, however, were significantly higher during the monsoon period, probably associated with rainfall-induced increases in suspended sediments. Intensive storm sampling during a small monsoon rainfall event (18 mm) and an extreme event (452 mm) showed rapid changes in both suspended sediments and dissolved solutes in an agricultural stream draining the Haean Basin where arable lands have expanded rapidly over the recent decades. By contrast, a nearby forest stream derived from North Korea showed little responses to the small event compared to larges changes during the extreme event. In the agricultural stream total Pb concentrations showed significant positive relationships with suspended sediments. Although limited sampling frequency and locations require a cautious interpretation, the overall results suggest that expansion of agricultural fields in steep mountainous watersheds can increase the susceptibility of soil erosion and its off-site environmental impacts under increasing rainfall variability and extremes.

Improvement of a Dynamic Food Chain Model Considering the Influence of Radioactive Contamination of Foods by Rainfall During a Nuclear Emergency (원자력 사고 중 강우에 의한 음식물 오염영향을 고려한 역동학적 섭식경로모델 개선)

  • Hwang, Won-Tae;Kim, Eun-Han;Han, Moon-Hec;Choi, Yong-Ho;Lee, Han-Soo;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • For the consideration of the influence on radioactive contamination of foods due to rain during the release period of radionuclides in a nuclear accident, the previous dynamic food chain model was improved. Wet interception coefficients for the agricultural plants were derived as a function of radionuclide and rainfall amount, and mathematical formula of the model was also re-established. In the results for the same time-integrated radioactive concentrations on the ground, radioactive contamination of foods decreased greatly by rainfall, and it decreased dramatically according to increasing rainfall amount. It means that predictive contamination in foods using the previous dynamic food chain model, in which dry interception to the agricultural plants is only considered, can be overestimated. Among radionuclides considering in this study ($^{137}Cs,\;^{90}Sr,\;^{131}I$), influence of rainfall for food contamination was the most sensitive to $^{131}I$, and the least sensitive to $^{90}Sr$.

Estimating Quantiles of Extreme Rainfall Using a Mixed Gumbel Distribution Model (혼합 검벨분포모형을 이용한 확률강우량의 산정)

  • Yoon, Phil-Yong;Kim, Tae-Woong;Yang, Jeong-Seok;Lee, Seung-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.263-274
    • /
    • 2012
  • Recently, due to various climate variabilities, extreme rainfall events have been occurring all over the world. Extreme rainfall events in Korea mainly result from the summer typhoon storms and the localized convective storms. In order to estimate appropriate quantiles for extreme rainfall, this study considered the probability behavior of daily rainfall from the typhoons and the convective storms which compose the annual maximum rainfalls (AMRs). The conventional rainfall frequency analysis estimates rainfall quantiles based on the assumption that the AMRs are extracted from an identified single population, whereas this study employed a mixed distribution function to incorporate the different statistical characteristics of two types of rainfalls into the hydrologic frequency analysis. Selecting 15 rainfall gauge stations where contain comparatively large number of measurements of daily rainfall, for various return periods, quantiles of daily rainfalls were estimated and analyzed in this study. The results indicate that the mixed Gumbel distribution locally results in significant gains and losses in quantiles. This would provide useful information in designing flood protection systems.