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Abstract: Long term streamflow regime under virtual climate change scenario was examined. Rainfall forecast

simulation of the Canadian Global Coupled Model (CGCM2) of the Canadian Climate Center for modeling and analysis

for the IPCC SRES B2 scenario was used for analysis. The B2 scenario envisions slower population growth (10.4 billion

by 2010) with a more rapidly evolving economy and more emphasis on environmental protection. The relatively large

scale of GCM hinders the accurate computation of the important streamflow characteristics such as the peak flow rate

and lag time, etc. The GCM rainfall with more than 100km scale was downscaled to 2km-scale using the space-time

stochastic random cascade model. The HEC-HMS was used for distributed hydrologic model which can take the grid

rainfall as input data. The result illustrates that the annual variation of the total runoff and the peak flow can be much

greater than rainfall variation, which means actual impact of rainfall variation for the available water resources can be

much greater than the extent of the rainfall variation.
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1. INTRODUCTION

The recent unusual extreme events of floods
and droughts are reported to be attributed by
climate change. There have been a lot of re-
searches on global climate change and the in-
crease of the GHG (Green House Gases) will
bring about the global warming. However, the
GHG’s effects on the global movement of
moisture and distribution of precipitation still be
a challenging problem. GCMs give quantitative
values of precipitation under virtual conditions
of climate change, even though its use in for
predicting the regional phenomena should be

very careful. Before hydrologists can figure out
the accurate amount of rainfall and its variability
enough in the future, they first need to examine
how the streamflow regime, e.g. total stream-
flow or peakflow is affected by rainfall variabil-
ity.

Assessing the impacts of climate variability
and change on hydrologic response and water
resources under global climate change condi-
tions has drawn attention of scientists since *90s
(e.g., Epstein and Ramirez, 1994; Kite et al.,
1994; Miller et al., 1994; Mohseni and Stefan
1998; Olivera et al, 2000; Arora and Boer,
2001). Even though some of the models use



82

distributed precipitation, they are based on lim-
ited number of ground observations. Down-
scaling the GCM precipitation was attained by
multi-season, multi-site disaggregation method
based on ground observation (Epstein and
Ramirez, 1994; Kite et al,, 1994) or multiple
regression based on geographical coordinates
and elevation (Yao and Terakawa, 1999).

In their work, Epstein and Ramirez (1994)
applied daily spatial disaggregation techniques
to the downscaling problem for the upper Rio
Grande basin in Colorado. Their spatial disag-
gregation models were used to downscale Cana-
dian Climate Centre GCM temperature and pre-
cipitation regimes to site specific locations
within the study basin, preserving spatial co-
variance structures at all spatial scales. They
used the Precipitation Runoff Modeling System
(PRMS), a deterministic rainfall runoff model! to
examine hydrologic sensitivity under the disag-
gregated climate forcing. Under a doubled CO,
scenario, an average 3.5 °C in disaggregated
GCM temperature and a slight (less than 1.5%)
decrease in disaggregated GCM annual precipi-
tation result in significant snowpack accumula-
tion decreases. Peak pack water equivalent de-
creases as large as 35% are observed. Total an-
nual runoff decreases by an average of 17.7%,
increasing during the fall and winter and de-
creasing in spring and summer. A seasonal shift
towards earlier in the year is observed in peak
runoff, soil moisture storage and evapotranspi-
ration. Soil moisture increases during winter
months and decreases during summer.
Evapotranspiration closely follows soil moisture
in all seasonal changes.

Kite, et al. (1994) carried out streamflow
simulations for the Mackenzie River basin
(1.6x10%m* ) using the climatological outputs

from the CCC GCMIL. The operating scales of
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CCC GCMII were 3.75° and 20 minutes. One
GCM pixel covers 72,000-92,000km* of area
which varies depending on latitude. They used
simple lumped reservoir parametric (SLURP)
distributed watershed model that is similar to the
macro-scale water balance model. They subdi-
vided the entire watershed into 5 grouped re-
sponse units (GRU). Within each GRU, the wa-
ter balance components of evaporation, overland
flow, infiltration and groundwater flow were
calculated. The hydrograph at GRU’s outlet is
obtained considering the travel time between
each pixel and basin outlet. Eventually the hy-
drograph at the main outlet of the basin is cal-
culated from channel routing using non-linear
storage function. This model is a distributed
model only in the sense that the hydrologic pa-
rameters are associated with the distribution of
land covers. GCM calculates excess water and
soil moisture at the land surface on the basis of
the vertical water balance between precipitation,
surface evaporation, and the water holding ca-
pacity of the soil. In GCMs, the precipitation
and surface evaporation are mainly driven by
heat and energy dynamics, and tracking lateral,
gravity driven flow, like streamflow, is simpli-
fied or not considered.

The approach to incorporate meteorological
model simulation for predicting streamflow was
taken by Yu, et ai(1999). They simulated the
river basin response to single-storm events by
linking HEC-HMS (Hydrologic Modeling Sys-
tem) to the Penn State-NCAR Mesoscale Mete-
orological Model (MM3) with 3 nested domains.
The dynamical downscaling was implemented
from a scale of 36 km to a scale of 4 km
through triple nesting. Using the distributed pre-
cipitation obtained from the dynamical down-
scaling to drive a distributed watershed model
was a notable advance over former methodolo-
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gies. Their study area is the Upper West Branch
of the Susquehanna River Basin (14,710 km*).
However, their downscaled precipitation shows
significant over- or under estimation of the
peaks. When considering that the hydrologic
model employs a 10-min time step, those dif-
ferences in temporal evolution of rainfall hyeto-
graphs can produce undesirable results in the
runoff hydrograph. A similar methodology is
employed here, except that the downscaling
procedure is based on a random cascade model
as opposed to a dynamical model.

Yao and Terakawa (1999)’s research was an-
other example of coupling distributed hydro-
logic model with distributed grid rainfall. They
developed a distributed hydrological model for
the basin divided into 1 jmn -scale squared
meshes. The mesh-based precipitation was ob-
tained from gage observations through down-
scaling using a stepwise regression method. The
monthly precipitation is regressed in terms of
latitude, longitude, elevation, and the precipita-
tion of the reference location. The monthly re-
gression formula with same coefficients is ap-
plied for day of each month with stepwise man-
ner. This downscaling method is straightforward
and effective for a watershed that is small
enough so that the precipitation of the specific
location is highly correlated to that of the refer-
ence location. Its main shortcomings are that: a)
accuracy decreases as the point of interest
moves away from the reference gage station and
b) spatial intermittency in the spatial coverage
of precipitation cannot be properly simulated.
Therefore, the daily runoff in periods of low
flow tends to be underestimated.

Generally, in large-scale watersheds, parame-
ters associated with wave celerity and hydraulic
geometry, which are required for distributed
dynamic routing, cannot be determined easily.
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Therefore, simple semi-distributed approaches
have been preferred instead. In existing
large-scale watershed models, the monthly hy-
drograph is relatively well simulated (e.g., Kite,
et al., 1994 and Yao and Terakawa, 1999). Typi-
cally, these models use simple interpolation
methods (e.g., Thiessen polygons, simple re-
gression, Kriging, etc.) for spatial precipitation
description and simulation. For the case of daily
runoff, the hydrograph can be fitted to observa-
tion through parameter calibration. However, the
calibrated parameters cannot always produce
accurate hydrograph for precipitation other than
what is used for calibration. That is truer for
larger-scale watershed models. Runoff tends to
be underestimated for uniformly distributed pre-
cipitation that does not consider spatial variabil-
ity. Therefore, as the size of the computational
time step decreases, the ability to characterize
and account for the spatial variability increases
in importance for an accurate simulation of hy-
drological response.

In this paper we show that, under plausible
virtual climate change scenarios, the variability
of total streamflow and peak flow can be much
greater than the variability of precipitation itself.
This can be interpreted as implying that the im-
pact of climate change on streamflow can be
more severe than can be expected from the rain-
fall pattern.

2. STUDY AREA

The South Platte River basin is located in the
southwest corner of the Missouri River Basin. It
lies between the latitudes 101° and 107° and
between the longitudes 38° and 42° in the
states of Colorado, Wyoming and Nebraska. The
basin is enclosed by the Continental Divide on
the west, the North Platte River Basin to the
north, the Arkansas River Basin to the south, the
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Republican River Basin to the southeast and the
Lower Platte River Basin to the east. Figure 1
shows a synoptic view and longitudinal river
profile of the South Platte watershed. The total
basin area is 62,936 km?, which makes up 4.6%
of the total drainage area of the Missouri River.
The longest flow length is about 711km.
According to the classification of the USGS,
the South Platte River basin is a part of the
Missouri region and consists of 19 sub-basins.
Among these, the Headwaters basin (HUC
#10190001) is located at most upstream of the
South Platte River (Figure 1) and virgin flow is
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relatively well preserved. The hydrologic analy-
sis presented in this study was performed for the
Headwaters basin (HUC #10190001). The outlet
of the Headwaters basin corresponds to the
streamflow gaging station of the South Platte
River near Lake George (USGS06696000),
which is located at Park County, Colorado,
38°54'19" in latitude and 105°2822" in longi-
tude. The drainage area of HUC #10190001 is
2,465 km® and the datum of the gage is 2,578m

above sea level.
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Figure 1. Synoptic view and longitudinal river profile of South Platte Watershed
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3. GCM AND CLIMATE CHANGE
SCENARIO

This study uses output from the CGCM2
model of the Canadian Climate Center for mod-
eling and analysis (CCCma) and its time series
plot for the average annual temperature is given
in Figure 2. CGCM2 of CCCma is reported to
be one of the most reliable GCM developed to
date. The second version of the Canadian Global
Coupled Model (CGCM2), is based on the ear-
lier CGCMI1, and improvements aimed at ad-
dressing shortcomings identified in the first ver-
sion. In particular, the ocean mixing parame-
terization has been changed from horizon-
tal/vertical diffusion scheme to the isopy-
cnal/eddy stirring parameterization, and sea-ice
dynamics has been included. In addition, other
technical modifications were made in the ocean
spin-up and flux adjustment procedure. A de-
scription of CGCM2 and a comparison, relative
to CGCM 1, of its response to increasing green-
house-gas forcing can be found in Flato and
Boer (2000).

IPCC SRES ‘A2’ and ‘B2’
The CCCma employed 3 different scenarios:

The 1S92a scenario has effective CO concentra-
tion increasing at 1% per year after 1990. The
IPCC 1S92a
greenhouse gas (GHG) concentrations and sul-
phate Aerosol loadings (GHG+A) from 1850 to
2100. The IPCC Special Report on Emission
Scenarios (SRES) provides 40 different scenar-

scenario  specifies equivalent

ios that are deemed equally likely. For the Third
Assessment Report, the IPCC facilitated the
conversion of two of these emission scenarios
(A2 and B2) into concentration scenarios for use
in climate simulations. The forcing changes im-

&5

plied by the concentrations were used to scale
the equivalent CO, values to be consistent with
the 1990 value in the [S92a simulation. The A2
scenario envisions population growth to 15 bil-
lion by the year 2100 and rather slow economic
and technological development. It projects
slightly lower GHG emissions than the 1S92a
scenario, but also slightly lower aerosol loadings,
such that the warming response differs little
from that of the earlier scenario. The B2 sce-
nario envisions slower population growth (10.4
billion by 2100) with a more rapidly evolving
economy and more emphasis on environmental
protection. It therefore produces lower emis-
sions and less future warming. Climate change
results based on the A2 and B2 scenarios are
also discussed in the IPCC Third Assessment
Report. Because of the data availability, only
IPCC SRES B2 scenario is used in this research.
The B2 scenario produces less warming than the
A2 or 1S92a results. A total of 111 years of
monthly data is available from the CCCma web
site. However, daily data can be obtained
through direct order. The data set for IPCC
SRES B2 used in this study consist of 4 differ-
ent time windows (1975-1995, 2011-2030,
2041-2060, 2071-2090). Figure 2 shows the
increasing temperature trend of CGCM2 simula-
tion for Central US and South Platte river basin.
Because the South Platte river basin is located in
the northwest section of the Central US, the time
series for South Platte river is shifted lower
about 2°C from the time series of the Central
US. Despite the significant shift in temperature,
the rainfall pattern stays consistent. Figure 2
shows the average annual temperature simulated
for the Central U.S. and for the South Platte
watershed for the SRES B2 scenario.
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Figure 2. Average annual temperature of CGCM2 simulation

4. STREAMFLOW SIMULATIONS

4-1 Downscaling of GCM rainfall simula-
tion

The most direct and straightforward way of
downscaling (in the broad sense) is direct inter-
polation method. Direct interpolation method is
easy to apply and could be effective for
smoothly varying fields such as sea level pres-
sure, but not appropriate for highly heterogene-
ous fields such as precipitation (Cohen and All-
sopp, 1988). In the narrow sense, downscaling
incorporates regional scale variability of the
underlying region as well as the heterogeneity
and nonlinearity governing the hydrological
processes. Downscaling schemes can be classi-
fied into 2 general categories; physical process
based techniques using nested models and
mathematical (or statistical) based techniques

using regression, nonlinear dynamics, Markov
process or multiplicative random cascades.
Wilby and Wigley (1997) classified the down-
scaling schemes more in detail into 4 categories,
namely: regression methods, weather-pattern
based approaches, stochastic weather generators,
and limited-area modeling. Initially, ‘Down-
scaling’ schemes have emerged as a means of
interpolating regional scale atmospheric predic-
tor variables (such as a mean sea-level pressure,
vorticity, etc.) to station-scale meteorological
series (temperature, precipitation, etc.) (e.g.,
Kim et al., 1984; Klein, 1985; Wigley et al.,
1990; Epstein and Ramirez, 1994). Mostly they
used monthly mean and area averages (over
10° —10%km?) as predictor variables, except for
the work of Epstein and Ramirez (1994) for
which daily values were used. One of the limita-
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tions of the regression approach is that it can be
useful if a strong relationship between a
large-scale parameter and regional climate has
been identified. Furthermore, as with many sta-
tistical tools, regression approaches could not be
used beyond the range of the data used to fit the
model. The statistical model is computationally
economical but cannot include the local effect
explicitly. In contrast, the nested method causes
heavy computational burden but can include the
local effect. Furthermore, atmospheric processes
can be coupled with ecological and hydrological
processes. Both methods depend critically on
the quality of the large-scale flow field in GCMs.
However, the parameters used in physical cli-
mate models are often derived from the data
obtained in regional experiments, but the result-
ing approximations are then used everywhere on
the globe. Clearly, this procedure yields less
reliably simulated local values (von Storch et al.,
1993). Marengo et al. (1994) also proposed that
improved parameterization of spatially hetero-
geneous rainfall in each grid box should im-
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prove simulations of spatial and temporal varia-
tions of evaporation and runoff. However, this
approach is still in development and requires not
only detailed surface climate data but also high
end computer capacity.

The Space-Time Stochastic Random Cascade
Model (Kang and Ramirez, 2001 and 2002) used
in this research is modified version of existing
Multiplicative Random Cascade Model which
was originally developed by Over and Gupta
(1995). The main advantage of the Space-Time
Stochastic Random Cascade Model is to repro-
duce the spatial clustering feature, spatial geo-
metric gradient within cluster, inter-scale corre-
lation structure and relatively low computational
The structure of the
Space-Time Stochastic Random Cascade Model

burden. conceptual

is shown in Figure 3.

4-2 Calibration of HEC-HMS

HEC-HMS is the GIS-based distributed rain-
fall-runoff model. The main advantage of the
HEC-HMS is its capability to handle geo-spatial
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Figure 3. Conceptual structure of the Space-Time Stochastic Random Cascade Model



88

information and distributed grid-based precipitation
data. Among the variety of specific options for
routing methods, the gridded Soil Moisture Ac-
counting (SMA), the ModClark quasi-distributed
linear transform, baseflow recession, and Muskin-
gum were selected for sub-basin loss method,
sub-basin transform, baseflow, and channel routing,
respectively. The sub-basin and channel configura-
tion is shown in Figure 4. Even though the SMA
model components represent the physical character-
istics of the watershed, these parameters may or
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may not be directly correlated with measured or
observed physical properties. That is because the
SMA algorithm applies some extent of lumping to
its parameters in approximating the combined
physical characteristics for a given watershed. The
final calibration of the HMS model to the 1997
JJA(June-July-August) NEXRAD precipitation and
the hydrograph for daily streamflow at the outlet of
the basin (S. Platte River near Lake George) are
shown in Table 1~4 and Figure 4, respectively.

Table 1. Calibrated parameters of HMS model (Initial storage)

R100W50 20 50 70 100 100
R170W150 20 50 70 100 100
R230W200 20 50 70 100 100
R270W250 20 50 70 100 100
R310W310 20 50 70 100 100
R220W220 20 50 70 100 100
R240W240 20 50 70 100 100
R470W420 20 50 70 100 100
R410W380 20 50 70 100 100
R370W360 20 50 70 100 100
R300W300 20 50 70 100 100
R280W280 20 50 70 100 100
R520W500 10 30 50 100 100
R490W490 20 50 70 100 100
R400W400 20 50 70 100 100

Table 2. Calibrated parameters of HMS model (Soil Moisture Accounting units)

R520W500 1 5

2 10 2 1
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RATOW420 2 7 2 15 4 3
R300W300 2 7 2 10 3 2
R100W50 2 5 2 5 2 1
R170W150 2 5 2 5 2 |
R400W400 ] 1 1 3 2 0.5
R370W360 2 3 2 2 1 0.5
R280W280 2 5 2 5 2 0.5
R490W490 0.5 0.5 0.5 12 1 0.5
R230W200 | 2 1 3 | 0.5
R270W250 0.5 2 1 2 | 0.5
R310W310 0.5 0.5 0.5 2 1 0.5
R220W220 | 2 1 4 3 0.5
R240W240 2 2 5 2 1
R410W380 1 5 3 10 3 2

R520W500 20 0.5 30 40 0.5 50
R470W420 25 0.5 30 40 0.5 50
R300W300 20 0.5 30 40 0.5 50
R100WS50 20 0.5 30 40 0.5 50
R170W150 20 0.5 30 40 0.5 50
R400W400 20 0.5 30 40 0.5 50
R370W360 15 0.5 30 40 0.5 50
R280W280 15 0.5 30 40 0.5 50
R490W490 10 0.5 30 40 0.5 50
R230W200 15 0.5 30 40 0.5 50
R270W250 10 0.5 30 40 0.5 50
R310W310 10 0.5 30 40 0.5 50
R220W220 15 0.5 30 40 0.5 50
R240W240 20 0.5 30 40 0.5 50
R410W380 20 0.5 30 40 0.5 50
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Table 3. Calibrated parameters of HMS model (ModClark transform & Groundwater recession)

o

o

5

™

.

23 3

R100W50 40 150 0.1 0.99 2
R170W150 20 130 0.1 0.99 2
R230W200 40 120 0.1 0.92 2
R270W250 60 150 0.5 0.99 2
R310W310 40 110 0.1 0.99 2
R220W220 40 80 0.1 0.94 2
R240W240 40 80 0.1 0.90 2
R470W420 120 150 0.1 0.8 2
R410W380 65 120 0.1 0.85 2
R370W360 100 120 0.1 0.99 2
R300W300 120 150 0.1 0.8 2
R280W280 80 120 0.1 0.85 2
R520W500 150 140 0.1 0.9 2
R490W490 100 150 0.1 0.98 2
R400W400 60 100 0.1 0.995 2

Table 4. Calibrated parameters of HMS model (Muskingum channel routing)

R170 2 0.2 1
R220 0.2 1
R360 0.2 1
R370 25 0.2 1
R310 5 0.2 1
R380 10 0.2 1
R410 2 0.2 1
R280 10 0.2 1
R390 12 0.2 1
R420 35 0.2 1
R470 20 0.2 1
R500 20 0.2 1
R520 25 0.2 1
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Figure 4. The hydrograph at the outlet of Headwaters basin

4-3 Streamflow scenario analysis

Before proceeding to the streamflow predic-
tion using GCM precipitation, the annual pattern
of GCM precipitation is compared to the his-
torical records of gage observations of the South
Platte River basin.

When setting up climate change scenarios for
GCM, from 1990 onward, an increase of 1% or
less per year (it varies with the specific scenario)
of the equivalent CO,is assumed. Based on this
assumption, climate models constantly project
an increase in global mean precipitation of be-
tween 3 to 15% for a temperature increase of 1.5
to 3.5°C . But these global average changes
hide significant differences in regional precipi-
tation patterns. Some large areas with increases
or decreases in precipitation may have areas
where precipitation changes in opposite direc-
tion (WSAT, 2000). Figure 3 shows that there is

significant inconsistency between absolute val-
ues of GCM precipitation and historical records
of gage observation. Nevertheless the relative
variability in GCM precipitation can be re-
spected. During 1990 to 2000, the climate con-
ditions for running model are similar to those for
the precipitation observations, but the model
simulation value shows bias from the observa-
tion which needs to be adjusted. Therefore, the
GCM precipitation needs to be adjusted to the
local region by shifting the whole series by the
difference or amount of bias between GCM pre-
cipitation and gage observation in 1990 to 2000
(Figure 5).

The HEC-HMC model developed by the U.S.
Army Corps of Engineers was used for the dis-
tributed rainfall-runoff model and the GIS pre-
processing was performed using HEC-GeoHMS.
The grid (i.e., NEXRAD or GCM) precipitation
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was used as an input to the HMS. In HMS, the
gridded Soil
(SMA) was selected for calculating sub-basin

Moisture Accounting scheme

losses, and the ModClark quasi-distributed lin-
ear transform method was applied in combina-
tion with the gridded SMA. Baseflow was
computed using the exponential recession con-
stant method. Finally, channel routing was per-
formed using the Muskingum method. The
30-arc seconds GTOPO30 DEM data were used
for terrain processing.'The STATSGO of USDA
Natural Resources Conservation Service was
used for extracting soil geographic information.
In order to predict streamflows from GCM
precipitation, the CCCma simulation is first
downscaled using the space-time stochastic
random cascade model (Kang & Ramirez, 2001
and 2002). Then, with the parameters used in the
downscaling model calibrated with NEXRAD
rainfall in 1997 (Kang & Ramirez, 2002), the
hydrographs were produced for the CCCma
scenarios. We did streamflow prediction for 2
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temporal windows (2011-2020 and 2081-2090)
of GCM precipitation. For each year, 10 hydro-
graphs were simulated for 10 different spatial
distributions of precipitation that are assumed to
have common large-scale forcing (total precipi-
tation). Therefore, 200 hydrographs were com-
puted for the year 2011 to 2020 and 2081 to
2090. Because each of the 10 hydrograph simu-
lations of a specific year has the same temporal
distribution of rainfall, they have similar shapes
(e.g., time to peak). However, the magnitude of
total runoff or peak flow varies according to the
spatial distribution of the rain fields. Figure 6
compares the coefficient of variation of the peak
flows and runoff volumes and illustrates that the
coefficient of variation of peak flow is higher
than that of runoff volumes over most of the
years. That means the distribution of peak flow
rate is more scattered over the simulations and
more sensitive to the spatial variability of rain-
fall than total runoff volume.
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Figure 5. The comparison of GCM rainfall and historical observation of gage rainfall
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Figure 6. The coefficient of variation of the GCM hydrograph prediction

Figures 7 and 8 show the statistics of the
simulated GCM precipitation and evaporation
for 2 temporal windows of the data set. The
comparison is made for annual values and JJA
(June-July-August) values. These figures show
that the annual evaporation is increased 4.65%
due to temperature increases, whereas the aver-
age annual precipitation is not changed signifi-
cantly. The JJA evaporation is increased 4.19%,
whereas the JJA precipitation is decreased 4.2%,
which results in the reduction of streamflow
runoff in the latter 10 years. Figure 9 and 10
illustrate the trend shift in JJA runoff volume
and peak flow rate corresponding to the GCM
climate change scenarios. The JJA runoff vol-
ume is decreased 15.37% and the JJA peak flow
rate is decreased 18.01%. Much of these reduc-
tions are the result of the decrease of JJA pre-

cipitation and the increase of JJA evaporation

and those decreasing rates are much greater than
the decreasing rate of precipitation. It is ex-
pected that the temporal variability of rainfall
would affect the streamflow pattern. The peak
flow and runoff volume have higher COV than
JJA precipitation, and between peak flow and
runoff volume, the peak flow has higher COV.
Those results can be disadvantageous for water
resources management. Even though the com-
putation gives the quantitative values for the
precipitation, total runoff volume and peak flow,
the judgment for the consistency or decreas-
ing/increasing trend should be very careful be-
cause of the relatively large standard deviations
and a lot of uncertainties in the computational
procedure. However, brief statistical tests will
be shown in the next section for examining the

significancy of long-term trends.
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Figure 7. The time series of GCM rainfall simulation data set for South Platte Headwaters Basin
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Figure 8. The time series of GCM evaporation simulation data set for South Platte Headwaters Basin
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Water Engineering Research, Vol. 5, No. 2, 2004

5. STATISTICAL TESTS
RESULTS

FOR THE

The null hypothesis of no difference in the
means between the first and the last 10-year
periods considered is examined. However, be-
cause the variance cannot be assumed to remain
constant between the 2 periods, the statistical
test must explicitly account for a time-varying
variance (Kottegoda and Rosso, 1997). When
the variances are unequal, the statistic does not
have a t-distribution. This is called the Behrens-
Fisher problem. In case of observations taken
from normal populations with unknown and
unequal variances, the statistic has an approxi

- ()?1 _‘yz)_(ﬂl _/uz)

s 7n )+(5,27m,)

T
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matet distribution with degrees of freedom.

The result of the test for the null hypothesis
for JJA rainfall, runoff volumes, and peak flow
rate is given in the Table 5 in which there are
not significant proofs of changing trends. How-
ever, Figure 9 & 10 shows that the values in
2089 are extraordinarily high and they can be
taken as outlier. The basic statisitics for the test
without the outliers are in the Table 6 ~8. Table
9 shows that the null hypotheses except for JJA
rainfall were rejected. So, one can tell the runoff
volume and the peak discharge would decrease
with level of significance @ =01, Even though
the null hypothesis of JJA rainfall was not re-

jected when @=0.1
a~0.16

it can be rejected if

Table 5. Test of null hypothesis with the original data

14 17 18 18
T ) 0.179 0.507 0.440
Fat ¢ =0.1 1.333 1.330 1.330
Null hypothesis Not rejected Not rejected Not rejected

Table 6.

Basic statistics of JJA precipitation without outlier

64.4

52.1

-19.1%

Mean
Standard deviation 28.4 243 -14.3%
C.0.V 0.441 0.466 +5.36%

Table 7. Basic statistics of runoff volumes without outlier

Mean 70,092.22 ' 46,053.13m’ -34.3%
Standard deviation 44,476 .9m' 29,601.41m' -33.45%
COoVv 0.635 0.643 1.24%
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Table 8. Basic statistics of peak flow rate without outlier
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Mean 30.53cms 16.61cms -45.61%
Standard deviation 25.7cms 14.51cms -43.65%
C.0V 0.842 0.874 3.66%

Table 9. Basic statistics of JJA precipitation without outlier

14 18 16 14
T 1.038 1.423 1.490
Fat @=0.1 1.330 1.330 1.330
Null hypothesis Not rejected Rejected Rejected

As indicated above, these results have large
inherent uncertainty as a result of the uncer-
tainty in each of the models used, namely, the
GCM model, the downscaling model, and the
HEC-HMS model. In addition, so-called “the
deterministic chaos™ is known to be important
reason for hindering deterministic long-term
climate forecasting. However, we need to pay
attention to the relative correlation between the
meteorologic (precipitation) and the hydrologic
(streamflow) phenomena.

6. CONCLUSIONS

The long-term relationship between the rain-
fall variability and streamflow regime was ex-
amined. The result shows that the annual varia-
tion of the total runoff and the peak flow can be
much greater than rainfall variation, which
means actual impact of rainfall variation for the
available water resources can be much greater
than the extent of rainfall variation. Even though
under the climate change scenario and the model
used in this research did not produce significant
increase in rainfall variability, other scenario in

other models or actual phenomenon could be
opposite. More reliable analysis will be ex-
pected with more reliable data and advanced
models in the future.
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