• Title/Summary/Keyword: Rainfall Error

Search Result 369, Processing Time 0.023 seconds

Parameter Estimation of Intensity-Duration-Frequency Curve Using Genetic Algorithm (I): Comparison Study of Existing Estimation Method (유전자알고리즘을 이용한 강우강도식 매개변수 추정에 관한 연구(I): 기존 매개변수 추정방법과의 비교)

  • Kim, Tae-Son;Shin, Ju-Young;Kim, Soo-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.811-821
    • /
    • 2007
  • The intensity-duration-frequency (IDF) curves by Talbot, Sherman and Japanese type formulas are widely used in South Korea since the parameters are easily estimated. However, these IDF curves' accuracies are relatively worse than those of the IDF curves developed by Lee et al. (1993) and Heo et al. (1999), and different parameters for the given return periods should be computed. In this study, parameter estimation method for the IDF curve by Heo et al. (1999) is suggested using genetic algorithm (GA). Quantiles computed by at-site frequency analysis using the rainfall data of 22 rainfall gauges operated by Korea Meteorological Administration are employed to estimate the parameters of IDF curves and minimizing root mean squared error (RMSE) and relative RMSE (RRMSE) of observed and computed quantiles are used as objective functions of GA. The comparison of parameter estimation methods between the empirical regression analysis and the suggested method show that the IDF curve in which the parameters are estimated by GA using RRMSE as an objective function is superior to the IDF curves using RMSE.

Analysis on Characteristics of Radiosonde Sensors Bias Using Precipitable Water Vapor from Sokcho Global Navigation Satellite System Observatory (속초 GNSS 가강수량을 이용한 라디오존데 센서별 편향 분석)

  • Park, Chang-Geun;Cho, Jungho;Shim, Jae-Kwan;Choi, Byoung-Choel
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.263-274
    • /
    • 2016
  • In this study, we compared the Precipitable Water Vapor (PWV) data derived from the radiosonde observation at Sokcho observatory and the PWV data at Sokcho Global Navigation Satellite System (GNSS) observatory provided by Korea Astronomy and Space Science Institute, for the summer of 2007~2014, and analyzed the radiosonde diurnal and rainfall-dependent bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and GNSS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study and dry bias of RSG-20A sensor was larger than other sensors. Overall, the tendency that the wet bias of the radiosonde PWV increased as GNSS PWV decreased and the dry bias of the radiosonde PWV increased as GNSS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2007, 2008 summer. In comparison for summer according to the presence or absence of rainfall, RS92-SGP sensor showed the highest quality.

Characteristics of tropical cyclones over the western North Pacific in 2007 (2007년 태풍 특징)

  • Cha, Eun-Jeong;Park, Yun-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.183-197
    • /
    • 2008
  • The purpose of this study is to summarize tropical cyclone activity in 2007. 24 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2007. The total number is less than the thirty-year (1971~2000) average frequency of 26.7. Out of twenty four tropical cyclones, 14 TCs reached typhoon (TY) intensity, while the rest 10 only reached severe tropical storm (STS) and tropical storm (TS) intensity - four STS and six TS storms. The tropical cyclone season in 2007 began in April with the formation of KONG-REY (0701). From April to May, two TCs formed in the western North Pacific in response to enhanced convective activity there. From June to July, convective activity turned inactive over the sea around the Philippines and in the South China Sea, and the subtropical high was weak over the south of Japan. MAN-YI (0704) and USAGI (0705) moved northwestward and hit Japan, bringing serious damage to the country. After August, convective activity became enhanced over the sea east of the Philippines, and the subtropical high turned strong over the sea south of Japan. Many TCs, which formed over the sea east of the Philippines and in the South China Sea, moved westward and hit China and Vietnam. PABUK (0706), WUTIP (0707), SEPAT (0708), WIPHA (0712), LEKIMA (0714) and KROSA (0715) brought serious damage to some countries including China, the Philippines and Vietnam. On the other hand, FITOW (0709) and NARI (0711) moved northward, bringing serious damage to Japan and Korea. After HAIYAN (0716), all four TCs except FAXAI (0720) formed over the sea east of $140^{\circ}E$. Three typhoons among them affected Republic of Korea, MAN-YI (0704), USAGI (0705) and NARI (0711). Particularly, NARI (0711) moved northward and made landfall at Goheng Peninsula ($34.5^{\circ}N$, $127.4^{\circ}E$) in 1815 KST 16 September. Due to $11^{th}$ typhoon NARI, strong wind and record-breaking rainfall amount was observed in Jeju Island. It was reported that the daily precipitation was 420.0 mm at Jeju city, Jeju Island on 16 September the highest daily rainfall since Jeju began keeping records in 1927. This typhoon hit the southern part of the Korean peninsula and Jeju Island. 18 people lost their lives, 14,170 people were evacuated and US$ 1.6 billion property damage was occurred.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

Determination of Parameters for the Clark Model based on Observed Hydrological Data (실측수문자료에 의한 Clark 모형의 매개변수 결정)

  • Ahn, Tae Jin;Jeon, Hyun Chul;Kim, Min Hyeok
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • The determination of feasible design flood is the most important to control flood damage in river management. Concentration time and storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood and shape of hydrograph. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by empirical formula. This study is to suggest concentration time and storage constant based on the observed rainfall-runoff data at GongDo stage station in the Ansung river basin. To do this, five criteria have been suggested to compute root mean square error(RMSE) and residual of oserved value and computed one. Once concentration time and storage constant have been determined from three rainfall-runoff event selected at the station, the five criteria based on observed hydrograph and computed hydrograph by the Clark model have been computed to determine the value of concentration time and storage constant. A criteria has been proposed to determine concentration time and storage constant based on the results of the observed hydrograph and the Clark model. It has also been shown that an exponent value of concentration time-cumulative area curve should be determined based on the shape of watershed.

Comparing Calculation Techniques for Effective Rainfalls Using NRCS-CN Method: Focused on Introducing Weighted Average and Slope-based CN (NRCS-CN 방법을 이용한 유효우량 산정기법의 비교분석: 가중평균방법과 경사도 도입을 중심으로)

  • Moon, Geon-Woo;Yoo, Ji-Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1171-1180
    • /
    • 2014
  • The NRCS-CN method is generally used to estimate effective rainfalls in a basin. However, since the curve number which plays a critical role in the NRCS-CN method was originally developed for US watersheds, it is limited to be directly applied to other basins outside the United States. Therefore various modifications have been suggested to revise the NRCS-CN for specific watershed condition. This study introduced the weighted average method and the slope-based CN to estimate effective rainfalls available for Korean watersheds and compared with the observed direct runoff. The overall results achieved from this study indicated that the adjusted slope-based CN considerably increases effective rainfalls in general and makes the duration of effective storm longer. Based on the statistical error analysis performed for various modifications of NRCS-CN, the weighted average method with the adjusted slope-based CN has highest precision with the observed direct runoff. In addition, after analyzing the relation between the initial loss estimated from rainfall-runoff observations and the potential maximum retention from GIS-based data, it turns out that the assumption of linear relationship between the initial loss and the potential maximum retention is not available for Korean watersheds.

Development of Rating Curve for High Water Level in an Urban Stream using Monte Carlo Simulation (Monte Carlo Simulation을 이용한 도시하천의 고수위 Rating Curve 개발)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1433-1446
    • /
    • 2013
  • In this study, we proposed a methodology to develop Rating Curves for high water level using rainfall generation by the Monte Carlo Simulation (MCS) technique, optimized rainfall-runoff model, and flood routing model in an urban stream. The developed stage discharge Rating Curve based on observed data was contained flow measurement errors and uncertainties. The standard error ($S_e$) for observations was 0.056, and the random uncertainty ($2S_{mr}$) was analyzed by ${\pm}1.43%$ on average, and up to ${\pm}4.27%$. Moreover, it was found that the Rating Curve extensions by way of logarithmic and Stevens methods were overestimated to compare with the urban basin scale. Finally, we confirmed that the high water level extension by random generation of hydrological data using MCS can be reduced uncertainty of the high water level, and it will consider as a more reliable approach for high water level extension. In the near future, this results can be applied to real-time flood alert system for urban streams through construction of the high water level extension system using MCS procedures.

Sensitivity Analysis of Runoff-Quality Parameters in the Urban Basin (도시 배수유역의 유출-수질 특성인자의 민감도 분석)

  • Lee, Jong-Tae;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.83-93
    • /
    • 1997
  • The purpose of the study is to analyze the sensitivity of the parameters that affect the runoff and water quality in the studied drainage basins. SWMM model is applied to the four drainage basins located at Namgazwa and Sanbon in Seoul and Gray Haven and Kings Creek in the USA. first of all, the optimum values of the parameters which have least simulation error to the observed data, are detected by iteration procedure. These are used as the standard values which are compared against the procedure. These are used as the standard values which are compared against the varied parameter values. In order to catch the effectiveness of the parameters to the computing result, the parameters are changed step by setp, and the results are compared to the standard results in flowerate and quality of the sewer. The study indicates that the discharge is greatly affected by the types of runoff surface, i.e., impervious area remarkably affects the peak flow and runoff volume while the surface storage affects the runoff volume at mild sloped basins. In addition, the major parameters affecting the pollution concentrations and loadings are the contaminant accumulation coefficient per unit area per time and the continuous dry weather days. Furthermore, the factors that affect the water quality during the initial rainfall period are the rainfall intensity, transport capacity coefficient and its power coefficient. Consequently, in order to simulate the runoff-water quality, it is needed to evaluate previous data in the research performed for the studied basins. To accurately estimated from the tributary areas and the rational computation methods of the pollutants calculation should be introduced.

  • PDF

Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model (다양한 규모매개변수를 이용한 비정상성 Gumbel 모형의 비교 연구)

  • Jang, Hanjin;Kim, Sooyoung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.331-343
    • /
    • 2015
  • Most nonstationary frequency models are defined as the probability models containing the time-dependent parameters. For frequency analysis of annual maximum rainfall data, the Gumbel distribution is generally recommended in Korea. For the nonstationary Gumbel models, the time-dependent location and scale parameters are defined as linear and exponential relationship, respectively. The exponentially time-varying scale parameter of nonstationary Gumbel model is generally used because the scale parameter should be positive. However, the exponential form of scale parameter occasionally provides overestimated quantiles. In this study, various forms of time-varying scale parameters such as exponential, linear, and logarithmic forms were proposed and compared. The parameters were estimated based on the method of maximum likelihood. To compare the accuracy of each scale parameter, Monte Carlo simulation was performed for various conditions. Additionally, nonstationary frequency analysis was conducted for the sites which have more than 30 years data with a trend in rainfall data. As a result, nonstationary Gumbel model with exponentially time-varying scale parameter generally has the smallest root mean square error comparing with another forms.

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.