DOI QR코드

DOI QR Code

Development of Rating Curve for High Water Level in an Urban Stream using Monte Carlo Simulation

Monte Carlo Simulation을 이용한 도시하천의 고수위 Rating Curve 개발

  • 김종석 (서울시립대학교 토목공학과) ;
  • 윤선권 (APEC 기후센터 연구본부 기후변화연구팀) ;
  • 문영일 (서울시립대학교 토목공학과)
  • Received : 2013.03.26
  • Accepted : 2013.05.06
  • Published : 2013.07.30

Abstract

In this study, we proposed a methodology to develop Rating Curves for high water level using rainfall generation by the Monte Carlo Simulation (MCS) technique, optimized rainfall-runoff model, and flood routing model in an urban stream. The developed stage discharge Rating Curve based on observed data was contained flow measurement errors and uncertainties. The standard error ($S_e$) for observations was 0.056, and the random uncertainty ($2S_{mr}$) was analyzed by ${\pm}1.43%$ on average, and up to ${\pm}4.27%$. Moreover, it was found that the Rating Curve extensions by way of logarithmic and Stevens methods were overestimated to compare with the urban basin scale. Finally, we confirmed that the high water level extension by random generation of hydrological data using MCS can be reduced uncertainty of the high water level, and it will consider as a more reliable approach for high water level extension. In the near future, this results can be applied to real-time flood alert system for urban streams through construction of the high water level extension system using MCS procedures.

본 연구에서는 도시하천을 대상으로 Monte Carlo Simulation (MCS)에 의한 모의발생 기법 적용으로 최적화된 강우-유출 모형과 홍수위 추적모형 연계를 통한 고수위 Rating Curve 작성법을 제안하였다. 대상유역의 관측 자료로부터 작성된 수위-유량곡선식은 유량측정의 오차와 더불어 고수위에 대한 불확실성을 내포하고 있음을 확인할 수 있었으며, 관측치와의 표준오차($S_e$)는 0.056으로, 무작위 불확실성($2S_{mr}$)은 평균 ${\pm}1.43%$, 최대 ${\pm}4.27%$로 분석되었다. 또한, 전대수지법과 Stevens방법에 의한 고수위 연장은 도시하천 유역 규모에 비하여 수위에 따른 홍수량이 과대 산정되는 문제점이 있는 것으로 분석되었다. 마지막으로, MCS에 의한 다량의 수문자료군 확보를 통한 수위-유량 관계곡선의 연장방법은 고수위에 대한 불확실성을 감소시켜며, 보다 신뢰성 있는 고수위 연장이 가능하였다. 향후 본 연구의 결과는 MCS에 의한 고수위 연장 시스템 구축을 통한 도시하천유역의 실시간 홍수 예 경보 활용에 적용이 가능할 것으로 사료된다.

Keywords

References

  1. Afshar, A., Rasekh, A. and Afshar, M. H. (2009). "Risk-based optimization of large flood-diversion systems using genetic algorithms." Engineering Optimization, Vol. 41, No. 3, pp. 259-273. https://doi.org/10.1080/03052150802433213
  2. Apel, H., Thieken, A. H. Merz, B. and Blöschl, G. (2006). "A probabilistic modelling system for assessing flood risks," Natural Hazards, Vol. 38, No. 1, pp. 79-100. https://doi.org/10.1007/s11069-005-8603-7
  3. Bailey, J. F. and Ray, H. A. (1966). "Definition of stage-discharge relation in natural channels by step-backwater analysis." River Hydraulics, Geological Survey Water-Supply Paper 1869-A, pp. 1-24.
  4. Clarke, R. T. (1999). "Uncertainty in the estimation of mean annual flood due to Rating Curve indefinition." Journal of Hydrology, Vol. 222, No. 1-4, pp. 185-190. https://doi.org/10.1016/S0022-1694(99)00097-9
  5. DeGagne, M. P. J., Douglas, G. G., Hudson, H. R. and Simonovic, S. P. (1996). "A decision support system for the analysis and use of stage-discharge rating curves." Journal of Hydrology, 184, 225-241. https://doi.org/10.1016/0022-1694(95)02973-7
  6. IOS (International Organization for Standardization) (1998). Determination of the stage-discharge relationship, Measurement of Liquid Flow in Open Channels-Part 2: ISO Standard 1100-2, pp. 133-153.
  7. Lambie, J. C. (1978). "Measurement of flowvelocity area methods. In: Hershcy RW, (Ed.), Hydrometry: Principles and Practices." Wiley, Chichester, Chapter 1.
  8. MOLIT (Ministry of Land, Infrastructure and Transport) (2007). Streamflow Survey Report in 2006 (in Korean).
  9. Moon, Y. L., Cho, S. J. and Chun, S. Y. (2003). "Nonparametric Kernel Regression model for Rating curve." Journal of Korea Water Resources Association, Vol. 36, No. 6, pp. 1025-1033 (in Korean). https://doi.org/10.3741/JKWRA.2003.36.6.1025
  10. Moyeeda, R. A. and Clarke, R. T. (2005). "The use of Bayesian methods for fitting rating curves, with case studies." Advances in Water Resources, Vol. 28, No. 8, pp. 807-818. https://doi.org/10.1016/j.advwatres.2005.02.005
  11. Kim, D. S., Yang, S. K. and Yu, K. K. (2012). "Analysis of looprating curve in a gravel and rock-bed mountain stream," Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 853-860 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.9.853
  12. Kim, J. S. (2008). Flood risk analysis and development of rainfallstage- discharge curve using Monte Carlo simulation in urban stream, Ph.D. Dissertation, University of Seoul (in Korean).
  13. Kim, J. S., Ahn, J. H., Oh, T. S. and Moon, Y. I. (2005). "Runoff analysis of urban watershed using MIKE SWMM Model." Journal of Korea Water Resources Association, Vol. 38, No. 11, pp. 907-916 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.11.907
  14. Kim, J. S., Kim, W., Kim, D. G. and Chi, C. Y. (2009). "Analysis on looped stage-discharge relation and its simulation using the numerical model." Journal of Korean Society of Civil Eng-ineering, Vol. 29, No. 1B, pp. 1-9 (in Korean).
  15. Kim, S. U. and Lee, K. S. (2008). "Identification of uncertainty in fitting rating curve with Bayesian regression." Journal of Korea Water Resources Association, Vol. 41, No. 9, pp. 943-958 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.9.943
  16. Kim T. B., Jang, J. Y., Shin, J. K. and Choi, S. W. (2011). "Prediction of stage discharge curve and lateral distribution of discharge in an arbitrary cross section channel with floodplain vegetation." Journal of Korea Water Resources Association, Vol. 44, No. 2, pp. 157-167 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.2.157
  17. Lee, C. H. (2008). "An application of a new two-way regression model for rating curves." Journal of Korea Water Resources Association, Vol. 41, No. 1, pp. 17-25 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.1.017
  18. Lee, J. J. and Kwon, H. H. (2010). "A basic study of stagedischarge rating stabilization at the ssang-chi gauging station." Journal of Korean Society of Civil Engineering, Vol. 30, No. 1B, pp. 81-87 (in Korean).
  19. Lee, J. J., Sol, J. S. and Kwak, C. J. (2009). "A study on the temporal variation of hydraulic characteristics by the stage-discharge relation curve." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 867-876 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.10.867
  20. Rantz, S. E. (1982). Measurement and computation of streamflow: Volume 2. Computation of Discharge, Water-Supply Paper 2175, USGS, pp. 285-631.
  21. Seoul Metropolitan City (2010). University-linked river management services: Measurement and Development of Rating Curves (in Korean).
  22. Stevens, J. C. (1907). "A method of estimating stream discharge from a limited number of gaugings." Engineering News, Vol. 58, No. 3. pp. 52-53.
  23. Yoo, J. H. (1999). "Development and application of rating curves for the Keum River." Journal of Korean Society of Civil Engineering, Vol. 19, No. II-6, pp. 665-675 (in Korean).
  24. Yoon, S. K., Chun, S. Y., Moon, Y. I. and Kim, J. S. (2008). "Analysis of hydraulic effects on piers and transverse overflow type structures in urban stream." Journal of Korea Water Resources Association, Vol. 41, No. 2, pp. 197-212 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.2.197
  25. Yoon, S. K. (2012). Flood risk and vulnerability analysis in an urban stream by climate change, Ph.D. Dissertation, University of Seoul (in Korean).

Cited by

  1. Urban stream overflow probability in a changing climate: Case study of the Seoul Uicheon Basin, Korea vol.13, 2016, https://doi.org/10.1016/j.jher.2015.08.001
  2. Estimation of Flood Water Level for Small to Medium Streams vol.14, pp.3, 2014, https://doi.org/10.9798/KOSHAM.2014.14.3.319
  3. Application of Very Short-Term Rainfall Forecasting to Urban Water Simulation using TREC Method vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.409