• Title/Summary/Keyword: Railway vehicle

Search Result 1,549, Processing Time 0.039 seconds

Fatigue Life Assessment for a Brake Disk of Railway Vehicles (철도 차량용 제동디스크의 피로수명평가)

  • Seok C.S.;Park H.S.;Huh Y;Kim J.H.;Lee Y.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.385-386
    • /
    • 2006
  • A brake disk in railway vehicle is safety part. Requirements not only in performance but also in comfort, serviceability and working lifetime are high and rising. In this study, we carried out fatigue test and thermal stress analysis. To determine a pressure distribution, contact pressure analysis precede thermal stress analysis. Especially, characteristics of the brake disk were analyzed in considering intial velocity, and thickness of a frictional plate. Form the comparing the results of experiment and FEM analysis, fatigue characteristic and fatigue life assessment ok a brake disk of railway vehicle were performed.

  • PDF

Deformation of the floor structure of railway vehicle depending on temperature and humidity (온습도 변화에 따른 철도차량 바닥재의 변형)

  • Shin, Bum-Sik;Kim, Myong-Soo;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1002-1007
    • /
    • 2008
  • The floor structure of railway vehicle can deflect and warp due to variation of temperature and humidity at the inside and outside of vehicle. In this study, its temperature and humidity characteristics was investigated experimentally for beam and plate specimen and numerically for the floor structure assembly. The temperature and humidity characteristics of a part were measured and the deformation and stress distribution of the floor structure were calculated using a commercial software. And the warp deformation of the plywood was measured experimentally. The results show that the temperature and humidity effects on the floor structure are the important factor to decide the strength and the quality of the floor structure of railway vehicles.

  • PDF

A study of automatic train operation by ATC system and fault tracing (ATC장치에 의한 자동운전 및 고장 추적에 관한 연구)

  • 김경식;강덕원;강리택;이종성
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.503-508
    • /
    • 2002
  • According to passengers gain and headway's contraction, railway vehicle is required quick and correct running. The importance of ATC device was increased gradually, and also is acting important role in safe train running and efficient use in this reason. Now, railway vehicle that is manufactured or is remodeled are designed to most automatic driving system, and ATC device design direction than other device of railway vehicle influences to whole system in this reason. Also, according as system becomes complicated gradually, importance of fault tracing function fur ATC device is emphasized gradually, and in this reason research about efficient fault tracing method is to act important role heightening reliability of ATC device. In this document, that analyzing about result through examination of automatic train operation system of localization model ATC device(SG-100) and application example, and do so that investigate about efficient fault Bracing.

  • PDF

Non-Destructive Diagnosis of Rotational Components of a Railway Vehicle Using Infrared Thermography and Pattern Recognitions (적외선열화상 이미지법과 패턴 인식을 이용한 철도차량 회전기기의 비파괴 진단)

  • Kwon, Seok Jin;Kim, Min Su;Seo, Jung Won;Kang, Bu Beong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.300-307
    • /
    • 2016
  • The faults in railway vehicle components may result in either the stoppage of the service and the derailment of the vehicle. Therefore, it is important to diagnose and monitor the main components of a railway vehicle. The use of temperature is one of the basic methods for the diagnosis of abnormal conditions in the rotational components of a railway vehicle, such as bearings, reduction gears, brake discs, wheels and traction motors. In the present study, the diagnose of the rotational components using infrared thermography and a pattern recognition technique was carried out and a field test was performed. The results show that this method of diagnosis using infrared thermography can be used to identify abnormal conditions in rotational components of a railway vehicle.

Traction System Characteristics of Railway Vehicle

  • Han, Young-Jae;Kim, Ki-Hwan;Seo, Sung-Il;Park, Chun-Su;Han, Seong-Ho;Kim, Young-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1351-1354
    • /
    • 2005
  • Recently, as the feasibility study shows that trans-Korea railway and trans-continental railway are advantageous, interest in high speed railway system is increasing. Because railway vehicle is environment-friendly and safe compared with airplane and ship, its market-sharing increases gradually. Korean High Speed Train has been developed by KRRI for last 7 years to satisfy the need. Korean High Speed Train (350km/h), composed of 2 power cars, 2 motorized car and 3 trailer cars, has been developed and is under trial test. To verify the design requirements for the functions and traction performances of the train, KRRI (Korea Railroad Research Institute) decided to evaluate traction performances of the train during trial test. For this purpose, torque, velocity, voltage and current must be measured. KRRI has developed a measurement system that can measure vast and various signals effectively. In this paper, we introduce traction performances of Korean High Speed Train. The traction measurement items are focused on the verification of motor block performances. Motor block consists of 2 motors. By this test, we verified traction performances of Korean High Speed Train

  • PDF

A Study on Technology Development of High Capacity PWM Converter for Electric Vehicle (전기철도용 대용량 PWM 컨버터 기술개발에 관한 연구)

  • Han, Young-Jae;Jo, Jeong-Min;Bae, Chang-Han;Lee, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1729-1734
    • /
    • 2018
  • Recently, interest in environmentally friendly transportation systems has been increasing, and study on railway systems has been aggressively conducted. Therefore, lots of studies have been done in railway advanced countries to improve performance of PWM converter. The research on the PWM converter for railway vehicle was mainly carried out on the converter mounted on railway vehicle such as the high-speed railway and metropolitan railway. In also, a lot of study has been carried out to improve converter performance installed in the ground. The high-capacity transform used in this paper converted from AC 22.9kV to AC 590V. The converter changed from AC 590V to DC 950V. In general, in the case of rectifier, the DC power supply system has a negative impact on inverter control characteristics because it can not avoid the pulsating component. In this study, it was performed current control for high-capacity converter using Matlab Simulink. The PWM converter is normally performed through the voltage and current at starting mode, powering mode, and braking mode. In the light-load test and the on-line test, we have studied for the PWM converter characteristics. Using this research, we have founded that the converter has excellent performance.

Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper (MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Weon-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF

Prediction of Dynamic Characteristics of Railway Vehicle by Stiffness Variation of Chevron Rubber Spring (세브론 스프링의 강성 변화에 따른 철도차량의 동특성 예측 연구)

  • You, Wonhee;Park, Joonhyuk;Park, Namcheol;Koo, Jeongseo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.162-167
    • /
    • 2017
  • The chevron rubber spring is used for subway vehicle as a primary suspension. Generally, the primary suspension has an influence to the running performance and not so much effect on the ride comfort in railway vehicle. But the stiffness of chevron spring is harder and harder as time goes on because of rubber characteristics. Therefore the dynamic characteristics such as ride comfort and derailment coefficient should be reviewed according to the stiffness variation of chevron rubber spring. In this paper the effect of chevron rubber spring on dynamic characteristics was studied by considering multi-body dynamics of railway vehicle on one straight line and seven curved lines.

Characteristic Prediction and Evaluation of Rubber Components for Railway Vehicle (철도차량용 방진고무부품 특성예측 및 평가)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.83-89
    • /
    • 2005
  • Rubber spring is used in primary suspension system for railway vehicle. This rubber spring has function which reduce vibration and noise, support the load carried in operation of rail vehicle. The non-linear properties of rubber which are described as strain energy function are important parameter to design and evaluate of rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of load-displacement of rubber spring for rail vehicle are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results

  • PDF

A Study on Derailment Possibility that can Analogize from Vibration and Displacement of Rolling Stocks (철도차량의 진동과 변위로부터 유추할 수 있는 탈선가능성에 관한 연구)

  • Hong, Yong-Ki;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.743-748
    • /
    • 2007
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Especially, a newly developed vehicle that first runs commercially requires necessarily the measurement and evaluation of derailment coefficient for securing the safety of a vehicle while measuring the derailment coefficient in view of securing running safety could be the more important factor than any other factors. In this paper, examined possibility that can forecast derailment possibility to behavior of only vibration and displacement by measuring vibration acceleration and displacement in vehicles that travel actuality rail track, and compares with data of wheel load/lateral force result.

  • PDF