• Title/Summary/Keyword: Railway bridge substructure

Search Result 16, Processing Time 0.029 seconds

Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction (PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가)

  • Min, Kyung-Ju;Lee, Sung-Uk;Choi, Hyung-Soo;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

Type Suggestion and Parameter Study for Long-Span Bridge of High-Speed Railway without the REJ considering CWR Axial Force (장대레일 축력을 고려한 REJ 미적용 고속철도 특수교량 형식 제시 및 변수별 분석)

  • Lee, Jong-Soon;Joo, Hwan-Joong;Shin, Jai-Yeoul;Yoon, Sung-Sun;Park, Sun-Hee;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1254-1261
    • /
    • 2011
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, long-span high speed railway bridges are limited at type and span length. In this study, in terms of CWR axial force, the long-span high-speed railway bridges without REJ(Rail Expansion Joint) is to propose the bridge type. Various Parameters analysis performed for the proposed type(Arch bridge, Cable-stayed bridge).

  • PDF

Analysis of Rail Stress on Diversity of Railway Bridge Sustem (고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석)

  • Kang, Jae-Yoon;Kim, Byung-Suk;Kwark, Jong-Won;Chin, Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

Field Test on the Rigidities of Substructures of High Speed Railway Bridges (고속철도교량 하부구조 강성도에 관한 현장실험)

  • Chin Won-Jong;Choi Eun-Suk;Kwark Jong-Won;Kang Jae-Yoon;Cho Jeong-Rae;Kim Byung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.118-124
    • /
    • 2006
  • SThe rigidities of bridge substructures are the important data in the rail-bridge interaction analysis in Korean High -Speed Railway. This experimental study is being performed because of followings. 1) More correct longitudinal stiffness of the structure including substructure should be considered in the calculation of stresses in rails. 2) There are many uncertainties in the design and construction of the piers and foundations. 3) Actual guideline for the rigidities of piers and foundations in the design is necessary. 4) Measurement on the rigidity of pier according to the types of piers, foundations and soil-conditions is needed. Curve for estimating the total rigidity of substructure will be obtained through this and further experimental studies. It may be used in the analysis of Korean High-Speed Railway bridge and then, longitudinal stresses in the rails can be estimated more accurately. One pair of piers, which consist of pot-bearing for fixed support and pad-bearing for movable support, are loaded by steel frame devices with steel wire ropes and hydraulic jack. The responses which are measured at each loading stages in those field tests are displacements and tilted angles on the top and bottom of piers. This study is being performed testing and analysis about several piers in the construction field.

Parameter Study for Long-Span Bridge of High-Speed Railway considering CWR Axial Force (장대레일 축력을 고려한 고속철도 특수교량의 변수별 분석)

  • Lee, Jong-Soon;Cho, Soo-Ik;Park, Man-Ho;Joo, Hwan-Joong;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1452-1459
    • /
    • 2010
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, that can be less constraints of construction depending on whether the application of rail expansion joint(REJ), which has disadvantaged in terms of maintenance. In this study, it was performed parameter study for multiple variables (shaft length, the upper and lower cross-section characteristics, track characteristics, etc.) in terms of CWR aspects. Structure-rail interaction analysis was applied to the typical simple span PSC Box and 3 span continuous bridge Extradosed Bridge(50m+80m+50m) excluding REJ. If you set the boundary e of variables for long-span railway bridge excluding REJ through the this study, when designing future is expected to be able to useful.

  • PDF

CWR for Young Jong Great Bridge Sourth Approach Section by ZLR (Zero Longitudinal Restraint) (종방향 활동체결구를 이용한 영종대교 남측 접속교량의 장대레일화 사례)

  • Lee Duck Young;Yang Sin Chu;Kwon Soon Sub;Kim Yong Man
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1057-1064
    • /
    • 2004
  • For New In-Cheon Airport. South Approach Section of Young long Great Bridge is to be special concerned to CWR due to substructure was already constructed former railroad bridge design specification. So we applied maintenance free system and CWR (Continuous Welded Rail) by ZLR(Zero Longitudinal Restraint) at bridge expansion joint part. This thesis generally introduce for CWR by ZLR at South Approach Section of Young long Great Bridge.

  • PDF

Performance Evaluation of Railroad Bridge Foundation under Design Earthquake (철도교량 기초지반의 내진성능평가)

  • 황선근;이진욱;조성호;오상덕
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.165-170
    • /
    • 2002
  • At the present time, civil structure based of aseismatic design in the Korea began about 1997. However, most of the railway bridge constructed with block and block in the past can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, etc. In this study, soil properties of the substructure of railway bridge with block and block was investigated through the SASW(spectral Analysis or Surface Waves) and RCTC test in the field and laboratories. Also, stabilization of liquefaction after occurred earthquake was investigated through the Seed & Idress method use of N value and Andrus and Stoke method use of S-Wave velocity.

  • PDF

A study on Grid deck for LRT (경량전철용 I형강 격자바닥판에 관한 연구)

  • 이기승;백진기;구자성;이안호;성택룡
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.328-335
    • /
    • 2000
  • The substructure of Light Rail Transit is mainly built on elevated structure that is composed of pier, girder and bridge deck. The bridge deck mostly has been made by field formed reinforced concrete so far. The objectives of the study are to find a method for design and construction of the new bridge deck. I-beam is fabricated to make grid and concrete is poured on it at factory. This type can be used for maintenance of duty line by advantages such as good quality control and short construction time.

  • PDF

Adaptive compensation method for real-time hybrid simulation of train-bridge coupling system

  • Zhou, Hui M.;Zhang, Bo;Shao, Xiao Y.;Tian, Ying P.;Guo, Wei;Gu, Quan;Wang, Tao
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.93-108
    • /
    • 2022
  • Real-time hybrid simulation (RTHS) was applied to investigate the train-bridge interaction of a high-speed railway system, where the railway bridge was selected as the numerical substructure, and the train was physically tested. The interaction between the two substructures was reproduced by a servo-hydraulic shaking table. To accurately reproduce the high-frequency interaction responses ranging from 10-25Hz using the hydraulic shaking table with an inherent delay of 6-50ms, an adaptive time series (ATS) compensation algorithm combined with the linear quadratic Gaussian (LQG) was proposed and implemented in the RTHS. Testing cases considering different train speeds, track irregularities, bridge girder cross-sections, and track settlements featuring a wide range of frequency contents were conducted. The performance of the proposed ATS+LQG delay compensation method was compared to the ATS method and RTHS without any compensation in terms of residual time delays and root mean square errors between commands and responses. The effectiveness of the ATS+LQG method to compensate time delay in RTHS with high-frequency responses was demonstrated and the proposed ATS+LQG method outperformed the ATS method in yielding more accurate responses with less residual time delays.

A Study on Damage Assessment Technique of Railway Bridge Substructure through Dynamic Response Analysis (동적 응답 분석을 통한 철도교량 하부구조의 피해평가기법연구)

  • Lee, Myungjae;Lee, Il-Wha;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, scale down model bridge piers were fabricated and non-destructive experiments conducted with an impact load to determine scours in the ground adjacent to the bridge piers using the natural frequency of the bridge piers. Three scale-model bridge piers with different heights were fabricated, and they penetrated the ground at a depth of 0.35 m. The scours around the bridge piers were simulated as a side scour and foundation scour. The experiments were conducted in 13 steps, in which scouring around the model bridge piers was performed in 0.05 m excavation units. To derive the natural frequency, the impact load was measured with three accelerometers attached to the model bridge piers. The impact load was applied with an impact hammer, and the top of the model bridge pier was struck perpendicularly to the bridge axis. The natural frequency according to the scour progress was calculated with a fast Fourier transform. The results demonstrated that the natural frequency of each bridge pier tended to decrease with scour progress. The natural frequency also decreased with increasing pier height. With scour progress, a side scour occurred at 70% or higher of the initial natural frequency, and a foundation scour occurred at less than 70%.