• Title/Summary/Keyword: Railway Noise and vibration

Search Result 476, Processing Time 0.035 seconds

Development of Dynamic Modeling and Control Algorithm for Lateral Vibration HILS of Railway Vehicle (철도 차량 횡진동 HILS를 위한 동적 모델링 및 제어 알고리즘 개발)

  • Lee, Jae-Ha;Kwak, Moon-K.;Yang, Dong-Ho;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.634-641
    • /
    • 2012
  • This paper is concerned with the dynamic modeling for the hardware-in-the-loop simulation of lateral vibrations of a railway vehicle. The resulting dynamic model is a nine degree-of-freedom model which can describe the lateral, roll and yaw motions of the car body and two bogies. It is assumed that the external disturbances come from wheel motions. In order to test the efficacy of the model, the linear quadratic regulator and the sky-hook control algorithm were designed and applied to the model. The simulation results show that both control algorithms are effective in suppressing the vibrations of railway vehicles.

A Study on Prediction of Railway Noise Using Raynoise Modeling - A comparison of predicting expressions and Raynoise simulations - (Raynoise를 이용한 철도소음의 예측에 관한 연구 - 예측식과 Raynoise모델링의 비교 -)

  • Kim Tae-Gu;Park Min-Soo;Kim Tae-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.6-10
    • /
    • 2005
  • With the rapid industrial development, railways have become a main traffic means of transportation. However, rail traffic noise and vibration have become a major problem in urban areas which is a very serious issue for the living environment. Especially, railway noise induced by rail operations has influenced on the residents living near railway tracks. The purpose of this paper is to investigate the Raynoise modeling in railway applications. Generally, my acoustics have been used to investigate the effectiveness of noise barriers in railway applications and barriers are modeled using the commercial software Raynoise. A-weighted sound pressure level have been measured at six locations, 4m from the track and are compared with experimental values. Based on the analysis of the results, Comparison between numerical and experimental values are within 1dB (A). Also, when a train is m through the Raynoise modeling, the general influential sphere of railway noise can be determined. Therefore, this study will be using basic data in establishing effective railway noise prevention plans far the future. Also, we could know that is applicable of Raynoise modeling at railway noise.

Recent Development Of (Semi)-Active Steering Bogie Systems For Railway Vehicles (철도차량용 (반)능동 조향대차 시스템의 기술현황)

  • You, Won-Hee;Park, Joon-Hyuk;Hur, Hyun-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.510-518
    • /
    • 2008
  • This paper presents recent development of (semi)-active steering bogies for railway vehicles and introduce the state-of-art of related technologies. Steering bogies have been studied in various researchers since they can offer high ride quality for passengers and reduce the maintenance costs of wheel and rail wear. Especially, they are considered to be a fundamental solution to dramatically reduce the squeal noise on tight curves. However, passive steering bogies such as self-steering bogies and forced steering bogies have shown their limits to cope with the various running conditions. Therefore, (Semi)-active steering bogies have been studied to overcome the drawbacks of the passive steering bogies. As a result, an active steering bogie, so called mechatronic bogie, is developed successfully in Europe and it has shown remarkable performance in test line.

  • PDF

A Study of Noise Elect for Selecting Eco-friendly Railways (철도노선 선정에 미치는 소음에 관한 연구)

  • Park, Byung-Eun;Kim, Myeong-Gyu;Han, Sung-Woo;Kim, Dong-Gi;Park, Kwang-Heyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.244-247
    • /
    • 2006
  • Railway is superior to the other land transportation systems in aspects of energy efficiency and environmental problems. Energy efficiency and environmental problems are not considered during a preliminary feasibility study. Investment for railway is low because of low B/C in the economical efficiency analysis during the preliminary feasibility study. The body of this paper studies the data which can reflect environmental problems an assessment of environmental impact. Investment for railway would be higher when main environmental elements are considered before the choice of the railway lines.

  • PDF

A Study on Noise Reduction of Railway Noise by Noise Barrier (방음 터널 설치에 따른 소음 저감 효과 연구)

  • Kim, Da rae;Kim, Tae min;Kim, Jeung Tae;Son, Jeung gon;Park, Gwang hyeon;Ryu, Raeeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.125-130
    • /
    • 2014
  • High speed railroad car and high-rise apartment with development of railway technology cause different problems of noise contrary to the previous generation. It is the most efficient noise reduction countermeasure but we studied that is the way on noise propagation with sound proof wall or sound proof tunnel around railroad. But if it were railroad on bridge, additional cost which is more expensive than installing one on the ground is needed. So sound insulation material considering reducing weight of recent soundproof facilities must be selected. It is in this study that predicted and analyzed acoustical and structural effect for noise reduction by installing soundproof tunnel. If it were departmentalized into additional study, could be able to expect noise reduction effect of sound proof tunnel establishment on the bridge.

  • PDF

A Study on the Reduction of Structure-borne Noise in a Train (철도차량 구조기인 소음의 저감에 관한 연구)

  • Woo, Kwan-Je;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.519-523
    • /
    • 2008
  • Inside noise levels of running train is the summation of air borne noise and structure-borne noise. In this paper, structure-borne noise, which is known to dominate inside noise level in open field, is investigated. Structure borne noise is analyzed in terms of vibration sources, transmission path and noise generating part so as to reduce inside noise levels.