• 제목/요약/키워드: Railway Bridge

검색결과 823건 처리시간 0.026초

타설 경계면을 고려한 철도교 콘크리트궤도 전단키의 전단 거동 해석 (Analysis of Shear Behavior of Shear Key for Concrete Track on Railway Bridge Considering Construction Joint)

  • 이성철;강윤석;장승엽
    • 한국철도학회논문집
    • /
    • 제19권3호
    • /
    • pp.341-350
    • /
    • 2016
  • 철도교량 구간의 콘크리트 궤도는 교량 상부구조의 움직임에 효과적으로 대응할 수 있도록 설계되어야 한다. 이를 위해 일반적으로 전단키로 명명되는 전단키를 교면 보호 콘크리트층(PCL) 위에 일정 간격으로 설치하여 그 위에 궤도 슬래브를 타설함으로써 궤도와 교량 상부구조의 상대 변위에 의해 발생하는 전단력을 전달하도록 설계하고 있다. 이 연구에서는 전단키의 전단 거동을 예측하기 위해 타설 경계면을 고려한 비선형 구조 해석 방법을 제시하였다. 제시된 해석 방법은 콘크리트 면에서의 마찰력과 철근의 다월 거동을 고려함으로써 전단키 타설 경계면(시공이음부)에서의 전단력-전단 미끌림 거동을 예측할 수 있으며, 해석 결과 4개의 시험체에 대한 실험 결과를 잘 예측하는 것으로 나타났다.

전이학습 기법을 이용한 철도교량의 동적응답 예측 (Predicting Dynamic Response of a Railway Bridge Using Transfer-Learning Technique)

  • 김민수;최상현
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.39-48
    • /
    • 2023
  • 철도교량의 설계는 장기간에 걸쳐 수행되고 대규모의 부지를 대상으로 하기 때문에 다양한 환경적인 요인과 불확실성을 동반하게 된다. 이러한 연유로 초기 설계단계에서 충분히 검토하였더라도 설계변경이 종종 발생하고 있다. 특히 철도교량과 같은 대규모 시설물의 설계변경은 많은 시간과 인력을 소모하며, 매번 모든 절차를 반복하는 것은 매우 비효율적이다. 본 연구에서는 딥러닝 알고리즘 중 전이학습을 통해 설계변경 전의 학습 결과를 활용하여 설계변경 후의 학습의 효율성을 향상시킬 수 있는 기법을 제안하였다. 분석을 위해 기개발한 철도교량 딥러닝 기반 예측 시스템을 활용하여 시나리오들을 작성하고 데이터베이스를 구축하였다. 제안된 기법은 설계변경 전 기존 도메인에서 학습에 사용한 8,000개의 학습데이터 대비 새로운 도메인에서 1,000개의 데이터만을 학습하여 유사한 정확도를 나타내었고 보다 빠른 수렴속도를 가지는 것을 확인하였다.

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck

  • Ju, Xiaochen;Zeng, Zhibin;Zhao, Xinxin;Liu, Xiaoguang
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.319-329
    • /
    • 2018
  • The field around additional cutout of the floor beam web in orthotropic bridge deck was subjected to high stress concentration, especially the weld toe between floor beam and U shaped rib and the free edge of the additional cutout. Based on different considerations, different geometrical parameters of additional cutout were proposed in European, American and Japanese specifications, and there remained remarkable differences among them. In this study, considering influence of out-of-plane deformation of floor beam web and U shaped rib, parameter analysis for additional cutout under typical load cases was performed by fine finite element method. The influence of additional cutout shape and height to the stress distribution around the additional cutout were investigated and analyzed. Meanwhile, the static and fatigue test on this structure details was carried out. The stress distribution was consistent with the finite element analysis results. The fatigue property for additional cutout height of 95mm was slightly better than that of 61.5 mm.

가동단 마찰계수가 장대레일 축력 안정성에 미치는 영향 검토 (Review of effects of friction coefficient of moving bearing on Stability of CWR)

  • 유제남;최영준;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.812-817
    • /
    • 2004
  • Recently drastic improvement of railway technology has been accompanied by the construction of very high-speed tracks. It should be noticed that Continuously Welded Rail(CWR) has played significant role in technical development of railway and that installation of CWR is now being scheduled on existing lines as well as newly-built lines. In general, interaction between CWR and bridge deck takes place on bridge section and additional axial force and displacement is to be developed owing to temperature and braking/acceleration forces. This interaction is known to be mainly governed by span organizations and arrangements of foot bearings. In common practice, movable bearing is stationed and designed on the assumption that it is not able to transfer the horizontal force of upper decks. However, it is well known that horizontal resistance is developed in movable bearings due to friction and that friction coefficient of movable bearing is ranged from 0.03 to 0.20 depending on the material of bearings and magnitude of reactions. Therefore, it is easily reasoned out that friction of movable bearing can influence the mutual behavior of CWR and bridge decks. Suggested in this study is to investigate the validity and efficiency of friction effect of movable bearings in controlling the axial force and displacement of CWR on continuous railway bridges.

  • PDF

전기철도 전차선로 지지애자의 염해지역 열화특성 사례 연구 (A Case Study of Degradation Characteristics for Rod-Insulator on Catenary System in Electric Railway)

  • 정호성;박영
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.263-266
    • /
    • 2019
  • In the Airport Railroad, the Yeongjong Bridge has a length of 4,420 m and connects Yeongjong Island with the mainland of Incheon City. The bridge is a two-level structure, consisting of a six-lane road at the upper level and a combination of a road and railroad at the lower level. The environmental conditions for the electric railway come mainly from the salt injury area and a heavy industry zone, and the maintenance cycles are determined differently depending on these conditions. This study analyzed the deterioration characteristics of long rod insulators produced with a movable ceramic bracket and polymer materials in the Yeongjong Bridge section of the Airport Railway operating in the salt injury area according to the material characteristics. Comparison of the corona measurements when the insulators were cleaned at the same time showed that the polymer insulator had a higher insulation performance than the ceramic insulator.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Project level에서의 철도 PC Beam교량의 경년열화모델구성 및 유지관리비용 추정 (Time-Dependent Degradation Model and Maintenance Cost of Rail line PC Beam Bridge in Project Level)

  • 권세곤;박미연;도정윤;김두기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2008
  • Construction project have extremely high risk in the process of construction owing to unexpected event, like as design amendment. As a result, owner have to endure enormous extra-cost to control the risk and continue to the project having more higher uncertainty. Also, if the structure is completed, it is needed that the structure is protected and maintained continuously during life cycle time to satisfying original aim of structure itself. LCC analysis to calculate cost of structure alternatives divides into two stage, one is design_LCC and the other is maintenace_LCC. But two stages all is needed in the transition deterioration model to calculate more reasonable LCC analysis. This paper developed the model using analysis of FMS contents and survey from professional about Prestressed concrete beam girder bridge(PC Beam bridge)in railway. The model is focused in project level of PC beam because any condition state information for element level analysis can not get up. This paper is intended to use the developed model in LCC analysis of PC Beam bridge in railway and constitute the foundation to perform more deep study in the near future.

  • PDF

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.