• Title/Summary/Keyword: Railway Bogie

Search Result 350, Processing Time 0.025 seconds

Active Steering of Railway Vehicles using State-Feedback Control (상태궤환제어를 이용한 철도차량의 능동조향)

  • Kim, Min-Soo;Park, Joon-Hyuk;You, Won-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1591-1592
    • /
    • 2007
  • 본 논문에서는 상태궤환을 이용한 철도차량의 능동조향을 위한 제어기법에 대해 다루었다. 능동조향은 곡선부 주행시 발생되는 승차감 저하 및 차륜/레일의 마모, 소음을 줄이고 고속주행을 위한 조향성능 및 주행안정성을 확보하기 위한 기술이다. 논문에서 사용된 제어 방법은 반대차(Half Bogie) 차량모델을 기초로 측정된 휠-레일의 횡변위(Lateral Displacement) 와 요각(Yaw Ang;e)정보를 토대로 휠에 요모멘트를 제어하였으며 시뮬레이션을 통해 제안한 방법에 대한 성능을 검증하였다.

  • PDF

Static equilibrium and linear vibration analysis of a high speed electric train system (고속 전철 시스템의 정적 평형 및 선형 진동 해석)

  • 김종인;유홍희;황요하
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.305-312
    • /
    • 1998
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix, The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the three are identified in this paper.

  • PDF

The Dynamic Interaction Between Propulsion And Levitation System In a MAGLEV (자기부상열차의 추진시스템과 부상시스템의 상호 영향)

  • 김국진;강병관;이종성
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.119-128
    • /
    • 1998
  • An electromagnets and a single-sided linear induction motor(SLIM) are used for suspension and propulsion equipment respectively. The electromagnets and SLIM are installed in the same frame, called a bogie, to reduce the volume under the vehicle floor and to raise the response charateristics to follow the track. Then the 3-dimensional forces(thrust force, normal force, side force) generated by SLIM direct]y affect the suspension system as the disturbance force. Moreover, in the running condition, the gap length variation in the electromagnets is the same as the SLIM. Therefore, the mutual interaction between the electromagnets and the SLIM is an important problem to realize the smaller gap length. In this paper, the dynamic interaction is analyzed and confir

  • PDF

The Conceptual Design of Korea High Speed Train System (한국형 고속전철 차량시스템의 개념설계)

  • 김경택;정경렬
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.172-180
    • /
    • 1999
  • The major subject of this paper is to develop the concept fur a Korea high speed train system and recommend to train configuration. High speed train configurations are basically concerned traction power(train configurations with concentrated; CPT or distributed Power system: DPT) and train design(single car as compared with articulated bogies). The result of configuration, a advantages and disadvantaged were necessitated by different train configurations; -distributed underfloor power have an increased length for the seats by 15% as compared with the concentrated power trait - articulated trainsets are characterised by less of number of bogies and reduced values of mass, train resistance, noise and vibration. from the result, the optimized train concept combining high seat capacity per train length with low weight and train resistance is 400m long, single -floor train composed of two symmetrically arranged half trainsets. Therefore, at this work recommended distributed train system However, the final decision of Korea high speed train configuration was concentrated power train and articulated bogie system. The configuration of trainset was 20cars included 2 power cars, 4 motorized cars and 14 trailer cars.

  • PDF

Structural Analysis of Thermal Expansion of Aluminum Alloy Gearbox Case of High Speed Train (고속전철용 알루미늄합금 감속기 케이스의 열변형에 대한 구조해석)

  • 최진욱;민일홍;김완두;박순원;임영식
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.181-188
    • /
    • 1999
  • For weight reduction of the gearbox of power bogie of high speed train, aluminum alloy is recommended for the material of the gerabox case. In this paper, three models(Steel G/B Case-Steel BRG. Case[model-S], Aluminum G/B Case-Aluminum BRG. Case[model-A], Aluminum G/B Case-Steel BRG. Case[model-AS]) were compared to each other in the view of thermal expansion. The evaluation of the internal load, thermal expansion deformation and lug analysis were executed. It results that the 'model-A' is excessively deformed and fail in the bolt hole of bearing case. Material change of the bearing case to steel(model-AS) is effective to restrain the deformation of the inner radios of the bearing case and to prevent the failure of that.

  • PDF

HST exterior noise : prediction and reduction scheme by using ray tracing technique (고속철도 차량의 외부소음 예측 및 저감 연구 : 광음향기법 응용)

  • Hong, Yun-H.;Kim, Sung-T.;Kim, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.209-214
    • /
    • 2009
  • In this research, an external noise distribution of a HST has been analyzed by using a ray tracing techniques. An aero-dynamic noise generated from a bogie has been considered as a major noise source. Then a distribution of the noise on the outside of the vehicle is calculated using a ray noise technique. The models simulated are two different acoustic fields: an open field and a tunnel. In order to evaluate the noise effects, an exterior structure has been modified by using a different length of skirts. Various application schemes of reducing an environmental noise level will be expected for a HST based on this research.

  • PDF

Multibody Dynamic Simulation and Running characteristics of DMT Freight (다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구)

  • Eom, Beom-Gyu;Hyun, Seok;An, Cheon-Heon;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1607-1613
    • /
    • 2008
  • The present investigate is a base investigate required in development of DMT wagon train. And it deduced that follows by developing trail analysis model about Modalohr wagon train and examining traveling movement specific using analysis model developed. Vibration acceleration of all direction was increased with addition of travel speed and first suspension. But in case of right and left vibration acceleration, that could influenced by nonlinear specific of first suspension. Therefore checking about those is needed. Frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$ generated in Right and left, up, down vibration of vehicle. And right and left vibration of bogie generated $25{\sim}35\;Hz$ in low speed section and frequency of $40{\sim}50\;Hz$ in high speed section, $25{\sim}35\;Hz$ in low speed section, $10{\sim}15$ or $40{\sim}50\;Hz$ in high speed section.

  • PDF

Measuring and analyzing the hardness of wheel tread based on the mileage of freight car (화차 주행거리에 따른 차륜답면 경도측정 분석)

  • So, Jin-Sub;Lim, Jae-Kyun;Lee, Dae-Gyu;Nahm, Gi-Don;Kim, Ju-Won;Choi, Hyeong-Su;Whang, Sang-Ju;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1642-1645
    • /
    • 2008
  • It is said that the effect in wheels of freight car varies with the type of freight, the condition of operation, the braking device, and the type of bogie. The hardness of open wagon, gondola car, propylene car, covered freight car, container car and hopper car has been measured according to the mileage through this research. As a result, the wheel with more mileages after shaving off the wheel tread has a higher hardness than the others in the case of same type of car.

  • PDF

Vibration reduction of the high-speed EMU for improvement of ride comfort (승차감 향상을 위한 동력분산형 고속전철의 진동저감)

  • Baek, Seung-Guk;Lee, Rae-Min;Shin, Bum-Sik;Lee, Sang-Won;Koo, Ja-Choon;Choi, Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1435-1440
    • /
    • 2008
  • High-speed train under development is a type of EMU(electric multiple units). Since power sources like motors and gears are distributed in the high-speed EMU, the high-speed EMU generates vibration and sound more than the articulated high-speed train. Vibration of vehicle, vibration between rails and wheels, hunting of bogie and snake motion reduce ride comfort. In this paper, to decrease the vibration of the articulated high-speed train, improvements were presented using an analytical model and a simulation model. The simulation model of the high-speed EMU was designed on the basis of the korean high-speed train and the design parameters for ride comfort were showed and the dynamic characteristics of the vehicle was understood. To consider the characteristics of the vehicle suspension, the analytical model was designed and the simulation model was verified with it.

  • PDF

A Study on FEM Analysis and its Endurance Evaluation of an Oil-Damper Rubber Bush for a Railway Vehicle (철도 차량용 오일댐퍼 고무부시의 유한요소해석 및 내구성 평가에 관한 연구)

  • Kim, Ho-Kyung;Park, Jin-Ho;Choi, Deok-Ho;Yang, Kyoung-Tak;Lee, Young-In
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.15-21
    • /
    • 2006
  • The railroad bogie's components experience repeated loading during service. Especially, oil damper bush has been fatigue fractured on the plane between rubber and steel stem during service, and which results in inferior of performance of the bogie. In this study, in order to offer a proper maintenance method of the bush, bubber bush used for the oil damper was fatigue tested and its damage fraction during service was estimated. Also, FEM analysis on the bush was conducted. When 1400, 1200, and 1000kgf of repeated loads were applied to the oil damper bush, final damage fraction exhibited 63.7%, 50% and 40%. From the results of FEM analysis, deformation energy density was found to be $0.5452kgf/mm^{2}$ at an applied load of 1400kgf and the location with maximum value coincided with the fractured location of the bush. Finally, it will be desirable to adopt the normalized damage fraction rather than absolute damage fraction in estimating remaining service lifetime of the bush.