• Title/Summary/Keyword: Railroad vehicles

Search Result 320, Processing Time 0.024 seconds

A Study on the displacement characteristics of suspension elements for KTX (고속철도차량 현가계요소 변위특성 연구)

  • Hur H.M.;Kwon S.T.;Lee C.W.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.378-382
    • /
    • 2005
  • The opening of high speed railway upgraded our land transportation speed limit, causing lots of changes including living and culture and also paving the way for stepping up the railway technology. However, it is also true that we had a limit to adopt the existing railway system structured for 150km/h to the new structure requiring a higher speed of approximate 300km/h due to technological, based on the time and experience. More importantly, heading toward a step of operating such a high speed railway system, it has been practically and quickly proposed that the railway needs high speed railway engineering, maintenance technology of parts of the vehicles to have a stable maintenance foundation and localization of major parts. Therefore, this study was intended to research the actual displacement characteristics in runningg on an actual track for the purpose of developing the protective and maintenance technology of springs and dampers, which are core parts among suspension elements of a high speed railway vehicle. For this, it was researched the actual vehicle test and its interpretation centered on primary spring, which is used for the suspension system of a bogie, body-body dampers and body-bogie yaw damper. Also, to analyze the displacement characteristics of suspension system in the actual conditions of high speed railway vehicles, a vehicle‘s dynamic characteristics was analyzed and interpreted. At the same time, a tester for measuring the actual displacement of such suspension elements was designed and attached to actual vehicles, to measure the displacements that occur in running it on the Seoul-Busan line, one of major lines serviced by KTX. The displacement data gained from the test with actual vehicles was analyzed for its displacement distribution depending on the service sections and frequency, with which the valuable data necessary for any potential breakdown or maintenance in the future could be obtained.

  • PDF

Impulse Characteristics of MOV Elements for Railroad Vehicle Arrester (전철 탑재 피뢰기용 MOV 소자 임펄스 특성)

  • Han, S.W.;Cho, H.G.;Lee, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1529-1531
    • /
    • 1999
  • The main functions of AC railroad vehicles arresters is to protect the main transformer from lightening impulse or switching impulse surge, then the MOV(metal oxide varistor) elements rated of 10kA is applied. The residual voltage and surge energy absorption are important parameters in designing arrester, these must be carefully decided with considering protecting level of impulse environment of system. The purpose of this study is to discuss the residual voltages and the energy absorption capability by impulse currents on MOV elements for railroad vehicles, and to introduce design factors which act as optimal protecting condition against impulse currents.

  • PDF

A Study on the Water-cooling Jacket Design of IPMSM for Railway Vehicles (철도차량용 IPMSM의 Water-cooling Jacket 설계 연구)

  • Park, Chan-Bae;Lee, Jun-Ho;Lee, Byung-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1475-1480
    • /
    • 2013
  • In this paper, the basic design study of a water-cooling jacket, which have reported no cases for applying to railway traction motors so far, were conducted for applying to Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. The basic thermal characteristics analysis of the 110kW-class IPMSM was performed by using 3-dimentional thermal equivalent network method. The necessary design requirements of the water-cooling jacket were derived by analyzing the results of the basic thermal properties. Next, the thermal characteristics analysis technique was established by using the equivalent model of the solenoid-typed pipe to be installed on the inside of the water-cooling jacket for 110kW-class IPMSM. Finally, a design model of 6kW-class water-cooling jacket was derived through the analysis of various design parameters.

Interior Noise Reduction for Subway Railroad Vehicles (통근형 지하철의 실내소음저감)

  • 김종년;유동호;박경환
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.265-272
    • /
    • 1998
  • In this paper, the intoner noise reduction for subway railroad vehicles was studied by improving transmission loss of carbody panels and side doors, and on-line tests were conducted to examine the exterior noise levels at various running conditions. Also the transmission loss for design candidates of the carbody specimen was measured in two reverberation rooms. From the results of the tests, side door gap is the most dominant factor affecting the Interior noise level of subway railroad cars with a sliding typed side door. The next one is revealed to transmission loss of a floor panel. To improve the transmission loss of the carbody, many activities were conducted such as, treatment of resilient and sound-absorbing materials and reducing the gap of the side door by adopting a brush and rubber, etc. The estimated interior noise level for modified car which is designed with improved carbody panels is lower than original car by about 5㏈.

  • PDF

Speed Signal Detector with Frequency 6-Multiplier used for the Railway Vehicles (철도차량용 6체배 주파수 속도신호발생장치)

  • Lee, Eul-Jae;Yoon, Yong-Ki;Jeong, Rag-Gyo;Choi, Kyu-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1315-1317
    • /
    • 2003
  • In this paper, a hew ground speed signal detector used for railway vehicles is presented. A frequency 6-multiplier is designed to the proposed speed signal detector to achieve more precise ground speed from the slow analog signals made from mechanical tacho signal generator. The computer simulation is carried out to clarify its effectiveness.

  • PDF

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

Thermal Characteristic Analysis of IPMSM for Traction Considering a Driving Pattern of Urban Railway Vehicles (도시철도차량의 운행패턴을 고려한 견인용 IPMSM의 열 특성 분석)

  • Park, Chan-Bae;Kim, Jae-Hee;Lee, Su-Gil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, temperature change properties on the 210kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) are performed with the cooling performance of a water cooling device through the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles. First, the thermal analysis modeling of 210kW-class IPMSM, which is an alternative to the conventional induction motor, and its water cooling device is conducted. Next, the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles is performed using 2-Dimensional FEM tool. Finally, the calculated characteristic results are analyzed. Consequently, it is confirmed that the internal temperature of the 210kW-class IPMSM may be lowered to about 42~52% by maintaining the coolant flow rate of the water cooling device (Cross sectional shape of the pipe has 220mm width and 10mm height) for 0.2kg/s level.

A Study on Temperature Characteristics of Main Transformers using Measurement System (계측시스템을 이용한 변압기의 온도 특성 연구)

  • Han Young-Jae;Kim Ki-Hwan;Kim Seog-Won;Mok Jin-Yong;Choi Jung-Sun;Kim Jung-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.240-245
    • /
    • 2006
  • Recently, as the road capacity reaches the limit and environmental problems becomes serious, there is gradually increased a need for railroad vehicles that are environment-friendly and have time regularity, reliability, and safety. Accordingly, in addition to conventional railroad vehicles, lots of vehicles are being newly developed. In this study, temperature sensors were adhered to transformer that is used in KHST(Korean High-Speed Train) to verify variation of temperature characteristics about transformer synthetically and efficiently. In the case that temperature of transformer exceeds reference temperature for running of KHST, overheating of transformer may cause a fatal accident of vehicle. Therefore, after on-line measuring system was constructed in vehicle, oil temperature and tank temperature were measured on real-time. Characteristics and main specifications of transformer in KHST were described in this paper. Also, measuring system for temperature measurement of transformer was explained in brief. Temperature data of transformer was acquired using measuring system, KRRI(Korea Railroad Research Institute) analyzed characteristic in contrast with comparing with temperature of transformer about month, running speed and running time.

Study on Computational Simulation of a Metro Collision Accident and Improvement of Passive Safety (도시철도 충돌사고 시뮬레이션 및 충돌안전도 개선방안 연구)

  • Jung, Hyun Seung;Son, Seung Wan;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.885-892
    • /
    • 2015
  • In this study, we simulate the railway crash accident that occurred at the Sangwangsimni station on the Seoul Metro Line #2, and we propose a solution to minimize the damage. We use LS-DYNA, which is the commercial software employed for collision analysis to perform 1-D and 3-D simulations for the recurrence of accidents. By performing 1-D simulations, we analyze the load, displacement, absorbed energy of the couplers, and acceleration of vehicles, and we evaluate the safety in accidental collisions. By performing 3-D simulations, we analyze the deformation of the car and over-ridding. We propose methods to improve the safety in collisions involving railway vehicles, and we perform collision accident simulations to determine improvements when applying a high-performance energy absorber to the front car.

A Study on Temperature Characteristics of Electric Apparatuses for High Speed Train (고속철도차량용 전기장치의 온도특성에 관한 연구)

  • 한영재;양도철;장호성;최종선;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1210-1216
    • /
    • 2003
  • Recently, as the road capacity reaches the limit and environmental problems becomes serious, there is gradually increased a need for railroad vehicles that are environment-friendly and have time regularity, reliability, and safety. Accordingly, in addition to conventional railroad vehicles, lots of vehicles are being newly developed. We developed the hardware and software of the measurement system for on-line test and evaluation of korean high speed train. The software controls the hardware of the measurement system and acts as interface between users and the system hardware. In this paper, practical experiment are performed to verify mechanical performance of motor and main transformer for Korean high speed rail. The experimental test carried out by using new temperature measurement method and verify the temperature performance of motor and transformer is verified.