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Abstract – An Electric Vehicle (EV) is operated with the electric energy of a battery in place of 
conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use 
of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the 
number of EVs will have a significant influence on the power supply and demand. Therefore, to 
maintain the balance of power supply and demand, it is important to be able to predict the numbers of 
charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the 
hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors 
such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific 
region provides statistical results using the Monte-Carlo Method. 
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1. Introduction 
 
In recent times, the energy industry places priority on 

competition to achieve industry leaser effect in the 
competition among countries and companies. The indis-
criminate consumption of fossil fuel for the development 
of industry has resulted in an increase in environmental 
pollution and the depletion of natural resources. The 
entire world has an interest in energy security and thus 
the need for alternative energy has gradually increased. 
Various industries such as alternative energy and new 
energy technology have been promoted in order to get rid 
of the dependency on fossil energy. Accordingly, public 
interest in electric vehicles such as Electric Vehicles (EVs) 
and Plug-in Hybrid Electric Vehicles (PHEVs) has been 
increasing with the concern for low-carbon green growth, 
global environmental problems, and fossil fuel shortages 
[1]. 

The Republic of Korea is currently planning to convert 
10% of fossil fuel vehicles into EVs by the year 2020[2]. If 
unprecedented numbers of EVs are connected to the local 
power systems, a deterioration of the power quality or 
other system issues, such as overload could result. Thus, 
to stabilize power supply and demand, the Ministry of 
Trade, Industry & Energy (MOTIE) has announced a 
basic plan for power supply and demand called the power-

demand forecast and management plan [3]. It is essential 
to be able to predict the power supply and demand when 
establishing a power-demand management plan [4-7]. To 
accurately predict the power supply and demand, it is 
necessary to predict the number of charging EVs, connected 
to the distribution system. However, prediction methods do 
not exist in the current research regarding the forecasted 
charging rate of EVs. When predicting the number 
chargeable EVs, conditions regarding the efficiency 
between the maximum driving time and charging time 
should be considered. However, currently, the method for 
predicting the number of chargeable EVs is based on a 
simpler method, in which traffics and battery power are 
used, as described [3-7]. Also, Gauss method, moving 
average method, exponential smoothing method, and 
regression analysis method [8-12] are used for the 
prediction. These methods are based only on the past data 
when predicting future. Therefore, accuracy of the values 
obtained by the above methods cannot be secured, since 
not many EVs are distributed yet. Thus, in this paper, a 
new prediction method was used. This paper suggests a 
prediction method that uses currently available data such 
as government policies, real-time traffic, and charging 
cost rather than historical data to forecast future demand. 
Therefore, this paper suggests a prediction method that 
uses currently available data such as government policies, 
real-time traffic, and charging cost rather than historical 
data to forecast future demand. In Section 2, prediction 
techniques based on Transformation Matrix Design 
Conditions and determination of charged/driven EV rates 
with matrix and Monte-Carlo Method are discussed. In 
Section 3, the predicted number of charging EVs using an 
EV charge-rate prediction algorithm and the simulation 

†  Corresponding Author: College of Information and Communication 
Engineering, Sungkyunkwan University, Korea.  
(hmwkim@hanmail.net) 

*  College of Information and Communication Engineering, Sung-
kyunkwan University, Korea. (ghs015@hanmail.net) 

**  KRRI(Korea Railroad Research Institute), Korea.  
({jhryu, youngkjw, gdkim}@krri.re.kr) 

Received: March 23, 2016; Accepted: August 11, 2016 

ISSN(Print)  1975-0102
ISSN(Online) 2093-7423



New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method 

 452 │ J Electr Eng Technol.2017; 12(1): 451-458 

results are analyzed. Finally, conclusions derived from our 
work are discussed in Section 4. 

 
 

2. Prediction Techniques for the Number of 
Charging Electric Vehicles 

 
2.1 Transformation Matrix Condition 

 
This paper uses charging conditions[1-3, 13-16] suitable 

for the Republic of Korea(average real-time traffic 
volumes, plans to distribute electric vehicles, status of local 
vehicles, power consumption of EVs, and charging time) to 
divide the design conditions into six distinct groups to 
forecast the charging rate of EVs. 

1) The total number of electric vehicles: The Republic 
of Korea has a plan to supply EVs and will implement 
strategies that will be established by 2020. It has set the 
distribution of EVs at approximately one million, which 
is 10% of the production goal for compact and intermediate 
vehicles until 2020. After examining the number of 
registered compact and intermediate vehicles in the 
distribution system, we predicted the number of electric 
vehicles using the predicted number of registered compact 
and intermediate vehicles registered in reference [2]. X S/S 
refers to “X Substation” and Z D/L refers to “Z Distribut-
ion Line”. X S/S and Z D/L are the actual terms used in the 
Korea Electric Power Corporation (KEPCO) distribution 
line.  
⇒ Electric vehicle of the X S/S ~ Z D/L: 896 units 

2) Charging and Operation time: This paper assumes EV 
statuses of driving, resting, and charging on an hourly rate. 
Therefore, because EVs are assumed to charge by the hour, 
there are 24 charging periods in a day. 

3) Battery Capacity: Vehicles in the Republic of Korea 
that operate on fossil fuels are segregated according to the 
size of the displacement (CC: Cubic Centimeter) [13]. 
There is no standard for the classification of EVs. Hence, 
in this paper, the EVs are classified similar to fossil fuel 
vehicles. 

Table 1 presents a comparison of the capacities of EVs 
and fossil fuel vehicles [1]. Only compact and midsize 
vehicles are separated because the Republic of Korea 
government set the diffusion of EVs as 10% of the 
production goal for compact and intermediate vehicles. 

Thus, the battery capacity of EVs is set to 24.4kWh in this 
paper. 

4) Charge Efficiency: This paper sets the EV's daily 
mileage as 40km, which is a fossil fuel vehicle’s daily 
mileage according to reference [2]. Using the Calculation 
Method of Charging Efficiency below, it is possible to 
calculate the daily EV battery usage, which is 6.2kWh. It 
can be fully charged in approximately two hours when 
the rated capacity of the home charger is set at 3.3kW. 
The Calculation Method of Charging Efficiency is used 
to predict the average power consumption of electric 
vehicles. Therefore, the maximum usable time for an EV 
is approximately four hours according to the calculation 
using the power consumption of electricity [1]. Therefore, 
the charging efficiency, which is calculated as the available 
driving time divided by the charging time, is assumed to be 
50% (e.g. one hour charge → 30 minutes usage). 

 
[Calculation Method of Charging Efficiency] 
- Daily average mileage of EV (ⓐ): 40km 
- Fuel Efficiency(ⓑ): 6.5km/kWh 
- Power consumption of EV (ⓒ=ⓐ/ⓑ): 6.2kWh 
- Charger capacity(ⓓ): 3.3kW 
- Charging efficiency (ⓔ=ⓓ/ⓒⅹ100) ≈ 50% 

 
5) Average traffic volume according to time in each 

season: The Republic of Korea has four distinct seasons; 
hence, there is a requirement to assess the power quality by 
season. To set the traffic volume, this paper researched the 
domestic traffic volume in each season and sets the 
seasonal number of charging EVs. Equations (1) and (2) 
below set the number of total EVs in each season using the 
domestic seasonal average traffic volumes [14] illustrated 
in Table 2. 
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E E= ×  (2) 

 
where, TV : Total number of fossil fuel vehicles 

mV : Seasonal number of fossil fuel vehicles 
PV : Seasonal fossil fuel vehicle rate 
TE : Total number of electric vehicles 
mE : Seasonal number of electric vehicles 

 
The hourly average traffic volume rate in Table 3 is 

necessary to set the average EV traffic volume in each hour 
[15]. By applying this data in Eqs. (3) and (4), it is possible Table 1. Comparison of capacity of fossil fuel vehicles and 

EVs 

Vehicle Type 
Vehicle Model Fossil fuel Vehicle EV 

Kia Motors “Ray” Less than 1000cc 16.4kWh 
Renault Samsung Motors 

“SM3” Less than 2000cc 24.4kWh 

Table 2. Average domestic traffic volume by season 

Season Number of fossil 
fuel vehicle 

Rate 
(%) Season Number of fossil 

fuel vehicle 
Rate 
(%)

Spring 16,183 95.1 Summer 17,022 100
Fall 16,656 97.9 Winter 14,707 86.4
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to set the number of EVs and predict the number of 
charging EVs. Table 3 presents the hourly number of driving 
fossil fuel vehicle from real-time traffic volume, which was 
extracted from the distribution system data provided by 
reference [15]. Therefore, the above explanation was used 
to set the seasonal number of operating EVs. 
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where, dTV : Daily total number of fossil fuel vehicles 

hV  : Hourly average number of fossil fuel vehicles 
hPV  : Average hourly fossil fuel vehicle rate 
hE  : Hourly number of electric vehicles 
mE  : Seasonal number of electric vehicles 

 
6) EV charging cost: KEPCO sets the load time and EV 

charging cost according to the hourly load. Tables 4 and 5 
indicate the charging fee according to the seasonal hourly 
load set by KEPCO [16].  

To apply the charging cost, this paper assumes that only 
some vehicles among the non-operating EVs that were 

used for more than 3 hours 30 minutes start charging 
during the High cost hours (H) and some vehicles among 
the non-operating EVs that were used for more than 2 
hours 30 minutes start charging during the Medium cost 
hours (M). During the Low cost hours (L), all EVs that 
operated for more than 30 minutes are assumed to start 
charging. 

 
2.2 Determination of charged/driven EV rate with 

matrix  
 
The total number of EVs in a specific region is fixed 

in a day. This means that internal behavior determines 
the amount of loads in a specific region. In Section II, the 
actual data from reference [2-3, 13-17] can be substituted 
for the number of driving EVs in each hour. However, 
the load is dependent on the number of charging EVs. 
Therefore, we must devise a method to determine the 
charging EVs from the driving EVs. For this task, we use 
the Monte-Carlo Method for un-determined variables in 
a transformation matrix. We define a matrix; A(τ); that 
describes the rate of the number of driving EVs in a 
specific region at time. The components of the matrix, 
Ai(τ)s show the status of usage in a 30 minutes that is great 
common divisor of charging and spend efficiencies. So, the 
number of component is 2Uh+1 where, Uh is the maximum 
driving time. Therefore, the matrix is written as: 

 
 1 2 2 1( ) { ( ), ( ), , ( )}

hUA A A Aτ τ τ τ+=   (5) 
 
Then, we define an operator which predicts next hour. 

This operator is (2Uh+1)ⅹ(2Uh+1) matrix to satisfy a 
dimensions of each τ. We define the operator B will be 
called transformation matrix as: 

 
 : ( ) ( 1)B A Aτ τ→ +  (6) 

 
Therefore, the full form of the evolution calculation is: 
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In Eq. (7), the indices are the time of driving, which can 

be determined by (i-1)/2. The transformation matrix B 
makes i hours of use at time τ+1 from j hours of use at time 
τ by the sum of the all components j. 

In a specific region, the number of EVs is fixed and 
matrix A describes the EVs’ distribution with driving time. 
Therefore, the sum of all the component of rate is: 
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The indices of transformation matrix B relate to the 

Table 3. Average domestic traffic volume by hour  

Time fossil fuel 
vehicle Rate(%) Time fossil fuel  

vehicle Rate(%)

1 912 2.78 13 1542 4.71 
2 681 2.08 14 1658 5.07 
3 503 1.54 15 1713 5.24 
4 347 1.06 16 1745 5.33 
5 310 0.95 17 1707 5.22 
6 472 1.44 18 1778 5.44 
7 908 2.78 19 2070 6.33 
8 1717 5.25 20 1827 5.59 
9 1974 6.03 21 1571 4.8 
10 1821 5.57 22 1608 4.92 
11 1634 5 23 1503 4.6 
12 1549 4.74 24 1155 3.53 

 
Table 4. Charging fee for electric vehicle          [KWR]

 Summer Spring∙Fall Winter 
Light Load 57.6 58.7 80.7 

Middle Load 145.3 70.5 128.2 
Peak Load 232.5 75.4 190.8 

 
Table 5. Classification of load time zone 

 Summer Spring∙Fall Winter 
Light Load 23:00∼09:00H 23:00∼09:00H 23:00∼09:00H

Middle  
Load 

09:00∼10:00H 
12:00∼13:00H 
17:00∼23:00H 

09:00∼10:00H 
12:00∼13:00H 
17:00∼23:00H 

09:00∼10:00H
12:00∼17:00H
20:00∼22:00H

Peak Load 10:00∼12:00H 
13:00∼17:00H 

10:00∼12:00H 
13:00∼17:00H 

10:00∼12:00H
17:00∼20:00H
22:00∼23:00H
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behaviors of the EVs. EV behavior capacities are driving, 
charging, and resting. This means that the sum over i at 
fixed j is one. 

 

 
2 1

, 1
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B
+

=
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The actual data from reference [2-3, 13-17]is calculated 

to rate V(τ). When a user drives i hours during an hour, this 
EV will be i+2 hours of EV use an hour later. Therefore, 
the relation of the actual traffic volume data and matrix 
form is:  

 

 
2 1

( 2)
1

( ) ( )
hU

i i i
i

B A Vτ τ
+

+
=

=∑  (10) 

 
To be more specific, the transformation matrix has zero 

values that relate to impossible behaviors of the EVs 
during an hour. Possible behaviors are only rest, driving, 
and charging and possible behaviors are i, i+2, and i-1, 
respectively, in transformation matrix B indices. Therefore, 
the transformation matrix B is written as: 

 

h h h h

h h
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  (11) 

 
From matrix B, resting, charging and using EVs are 

determined as Bii, B(i-1)i and B(1+2)i respectively. Fig. 1 
indicates a subdivision of the transformation matrix. 
According to behaviors of the EVs, it can be divided into 
three kinds, as shown in Fig. 1.  

 
 Upper triangular matrix is charging rate. 
 Lower triangular matrix is resting rate. 
 Diagonal matrix is rest rate. 

Therefore, the numbers of each behavior are represented 
as: 

 

Rest:  
2 1

1
( )

nU

ii i
i
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Charging:  
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Driving:  
2 1
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i

B A τ
+

+
=
∑  (14) 

 
To predict of our model, the transformation matrix B is 

mainly handled with a constraint the actual data (The 
transformation matrix B has to satisfy the Eq. (10)). 
However, there is no method to determine exact values of 
the components of the transformation matrix, including the 
driving components B(i+2)i.  

In statistics, the Monte-Carlo Method [17] uses random 
numbers in a simulation with constraints and determines a 
solution. Using this method, it can generate random 
numbers in the transformation matrix B that satisfy the 
constraint. 

 
 
3. Calculation for the Number of Charging EVs 

using the Algorithm 
 

3.1 EV charging rate prediction algorithm 
 
Within the maximum operating time range, the EV 

operating rate and charging rate are random. Therefore, the 
algorithm used to analyze the charging EV rate in this 
paper is essential. After computing the transformation 
matrix using the factors in Section II, the Monte-Carlo 
Method is used to calculate the charging rate because the 
operating and charging rates change randomly. 

To minimize error, the predicted EV traffic pattern rate is 
realized from the quantity of real time traffic and Eq. (12); 
and then the error is reduced to 0.03%. After calculating 
the operating rate, the EV charging rate is calculated with 
the following 10 stages. 

Using the following algorithm, it is possible to predict 
the load increment rate, due to EVs, according to each 
season and time range. Fig. 2 is an algorithm that uses 
boundary conditions set from actual domestic data and 
analyzes operating electric vehicles and charging rate 
patterns at the same time. 

 
3.2 Application of the prediction algorithm in the 

simulation 
 
In case of that the maximum possible usage is four hours, 

the matrix A and the transformation matrix B have 9 and 81 
components, respectively. The following Eq. (15) is the 
expression for the case:  

 
Fig. 1 Subdivision of the transformation matrix 
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S T A R T

Step 2. Choose the season

Step 3. Set the total number of EVs 

Step 4. Set the amount of traffic 
volume according to the season

Step 5. Calculate the hourly number of 
driving EVs according to the season

Step 6. Apply transfer matrix

Step 7. Apply Monte-Carlo technique

Step 8. Compare real-time traffic and transfer 
matrix

030
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<
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iii τ

Step 10. Calculate the number of 
charging EVs by time range

E N D

NO
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Step 1. Choose the area 

Step 9. Predict the charging EV rate 
according to time range

 
Fig. 2 Flow chart of prediction method of the number of 

charging electric vehicles 
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  (15) 
 
In the transformation matrix B, there are 24 values 

which can have non-zero value. The degree of freedom of 
the 24 components is 15 because of the relation of the 
equations (9) and (10). In our model, we construct model 
constraints with dependences on the electricity cost. We set 
the behaviors as: 

 
 Low electricity cost: All EVs that have been used are 
charging. 

 Medium electricity cost: EVs used more than 2.5 hours 
are charging. 

 High electricity cost: EVs used more than 3.5 hour are 
charging. 

 
The 15 components are undetermined by constraints. 

Therefore, simulation with these 15 components is computed 
using the Monte-Carlo Method. To generate the random 
numbers, we use the following procedure. We set the traffic 
volume to determine 15 components. The 7 components of 
matrix B that relate to the traffic volume Eq. (10) require 6 
random numbers to satisfy the traffic volume because the 
sum of the 7 components is equal to the traffic volume. We 
generate 6 random numbers first, then generate the others 
to satisfy Eq. (9). Eq. (9) can generate 9 equations and each 
equation is the sum of two or three components. Numbers 
previously determined in the first step, however, reduce the 
degree of freedom in each Eq. (9). Therefore, we generate 
only 8 additional random numbers to simulate our model. 
For computation, we use Intel FORTRAN77. 

Moreover, in order to apply different electricity price by 
different hours, the demand for charging is randomly 
selected, and, when the driving time is long, charging is 
conducted automatically and regardless to the price, by 
the algorithm. In other words, an electric vehicle which 
was driven for over 3 hours and 30 minutes is expected 
to be recharged, by its essential need for more electricity. 
Predictions, satisfying the above assumption and demands 
for charging, were numerically calculated. To find a 
more precise initial value at the hour or 01, the predictions 
reflected a 48-hour based timeline. Moreover, in order to 
increase accuracy furthermore, a Monte-Carlo simulation 
was conducted, for 100 thousand times. Fig. 6 indicates, as 
a result of the simulation regarding the charging rate of the 
hour 04, that approximately 20% of EVs are charging with 
the highest frequency. 

 
3.3 Prediction results of charging electric vehicles 

according to time range in each season 
 
Fig. 4 indicates the EV charging rate according to the 

 
Fig. 3 Distribution chart of Hourly number of charging

EVs at 04AM 
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time range. It uses actual domestic data (Republic of 
Korea’s real-time amount of traffic and electric charging 
cost) and the prediction method elaborated in Section III. 
The maximum hourly charging rate is one. The reason 
why spring, summer, and fall are the same rate is that the 
time when charging costs change is the same for these 
seasons. Further, the charging rate changes according to 
the traffic rate and electric charging cost. Moreover, the 
charging rate is similar for all seasons; however, it increases 
approximately 33~35% during the period beginning at 23:00 
when the price decreases. 

However, as indicated in Fig. 4, the charging rate is 
more sensitive to the charging cost than the amount of 
traffic. This is because the charging ratio during the time 
when the cost changes (between 12:00 to 20:00) is 
different for spring, summer, and fall. As such, the electric 
cost influences the demand of the users [18-19]. 

Table 6 presents the number of predicted electric 
charging vehicles according to the charging rate in Fig. 3. 
Although the charging rate is similar, the number of EVs 
differs because the EV usage per day is different according 
to the season. Therefore, a maximum difference of 100 
EVs can be seen during the period beginning at 23:00, 
which is expected to be the time when the most electric 
vehicles are being charged. 

 

Table 7. Compare prediction technique and actual data 

 Prediction Technique Actual Data[16] Error Factor
Light Load 45.2% 41.4% 3.8% 

Middle Load 33% 33.8% 0.8% 
Peak Load 21.8% 24.8% 3% 

 
3.4 Error rate of predicting charging electric vehicles 

 
To determine the accuracy of the prediction method 

suggested by this paper, the following is a comparison 
between this paper’s results and the numbers from 2013 
according to light load, middle load and peak load times.  

The actual data is not distributed according to time and 
season; rather, it is distributed according to light load, 
middle load and peak load. Hence, this paper converts its 
numbers into light load, middle load and peak load as 
presented in Table 7 for easier comparison. 

 
 

4. Conclusion 
 
The prediction method suggested in this paper determines 

the predicted hourly charging EV rate using a transformation 
Matrix; and forecasts the number of operating electric 
vehicles according to EV charging cost, season, difference 
in real-time traffic volume, and possible increase of EV 
usage. 

As indicated in the results in Section 4, the greatest 
number of customers who wished to charge was during the 
period beginning at 23:00, when the charging cost was 
least. Moreover, the number of charging EVs was higher in 
the summer by 5% compared to spring, 2.1% compared to 
fall, and 13.6% compared to winter. This prediction of the 
charging rate was largely influenced by the charging cost. 
This is because there are many vehicles that do not start 
charging owing to the high charging cost. Therefore, there 
is clear risk that a large number of electric vehicles may 
charge during the day when the charging cost is reduced. 
To elaborate, it is predicted that all electric vehicles could 
be connected to the distribution system at the same time 
during the period beginning at 23:00, when the charging 
cost is the least. As such, there is a need to mitigate such 
concentration during the lowest cost hours. 

In this paper, the error factor was as low as 3.8%, 0.8%, 
and 3% based on light, middle, and peak loads respectively. 
However, it is unlikely that the actual charging rate data of 
the EV is accurate in this paper, because the penetration 
rate of the EVs is low. Owing to these issues, we designed 
the prediction technique such that the predicted values 
reflect the actual data. An advantage of the prediction 
method suggested by this research is that it can be flexibly 
applied to actual data such as real-time traffic, battery 
capacity, and length of operation per day. Therefore, even 
if the actual charging rate data change, it is always possible 
to reduce the error factor through the actual data. Moreover, 

Table 6. Hourly number of electric vehicles using trans-
formation matrix and monte-carlo method  

Time Spring Summer Fall Winter Time Spring Summer Fall Winter
1 461 485 475 421 13 214 226 221 205
2 358 376 368 326 14 227 239 234 214
3 239 251 246 225 15 242 254 249 228
4 163 171 168 152 16 256 270 264 242
5 109 115 112 100 17 289 304 298 246
6 73 77 75 67 18 290 305 298 252
7 63 66 65 57 19 285 299 293 247
8 83 87 85 75 20 303 319 312 281
9 80 84 82 73 21 324 341 333 295
10 128 134 132 112 22 319 336 329 276
11 163 171 167 148 23 608 639 626 550
12 204 215 210 187 24 571 601 588 518

 

Fig. 4 Hourly charging rate curve according to seasons 
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this research can be used to predict and prevent potential 
problems that may occur in the distribution system when 
many electric vehicles are connected at the same time by 
predicting the charging rate changes according to the 
increase of electric vehicle usage. Therefore, when applied 
to distribution automation system, it can be built very 
advanced distribution system. The reason is that it can be 
predict future power consumption of electric vehicle. We 
expect to lower the event(Voltage sag, Blackout and so on) 
occurred in the distribution system. 
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