• 제목/요약/키워드: Rail vibration

검색결과 416건 처리시간 0.024초

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.

전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링 (Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load)

  • 김준수;김성종;이혁;하성규;이영현
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1547-1557
    • /
    • 2013
  • 시간변화 이동자기력이 작용하는 레일의 변형을 티모센코 보 이론(Timoshenko beam theory)로 가정하였으며, 보의 진동특성에 영향을 미치는 탄성체기초의 감쇠효과 및 강성을 고려하였다. 푸리에 급수와 수치해석을 이용해 강제진동모델의 동적응답과 임계속도를 구하였다. 레일의 진동모델을 유한요소 해석 및 오일러 보 이론(Euler beam theory)과 비교 검증하였다. 강제진동모델을 이용하여 레일의 영구변형을 예측하였으며, 실험결과 레일표면의 영구변형 및 마모를 확인하였다. 보의 설계변수인 레일의 형상, 재료, 탄성체 기초의 감쇠효과 및 강성이 레일의 임계속도 및 레일의 처짐, 축 방향 응력, 전단 응력에 미치는 영향에 대한 매개변수적 연구를 진행하였으며, 보의 설계방향을 얻을 수 있었다.

방진체결구/방진매트의 진동저감특성에 관한 연구 (A Study on the Vibration Reduction Characteristics of the Elastic Rail Fastener/Ballast Mat)

  • 엄기영;황선근;고태훈;김정근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.375-380
    • /
    • 2001
  • Generally, countermeasures for the train-induced vibration are divided into the measures at the source, propagation path and receiving object. Among these measures the countermeasure at the source location is the most active and effective one in the field of railroad. In this study, the effectiveness of each anti-vibration measures at the track(source location) such as elastic rail fastener, ballast mat were evaluated through the comparison of acceleration level, insertion loss at the installed locations of each measures. As result of field measurement of vibration at the railroad track supporting structures and on the ground nearby the structures, elastic rail fastener showed vibration reduction effect of 4.5 ∼7.3㏈ on the concrete slab, 1.6∼3.7㏈ on the ground with the train operation speed of 80km/hr. In the case of ballast mat, the vibration reduction effect at the concrete slab and on the ground were 11.9∼13.3㏈ and 6.1∼7.6㏈, respectively.

  • PDF

성능시험을 통한 경전철 차량의 주행특성 비교 고찰 (A Comparison on Running Characteristics of Light Rail Transit Vehicles through Performance Test)

  • 전창성;전홍규;김영국;박태원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2011
  • Test Results of noise, ride comfort and vibration tests are investigated for three kinds of light rail transit vehicles which have passed the performance test and the test criteria has been satisfied. Noise level of light rail transit vehicles was 64~69dB(A) at stop and 74~75dB(A) when operated at full speed. The ride comfort index according to UIC 513R was 2.02 to 2.45. Vibration level of rubber tired light rail transit vehicle was from 'normal' to 'good' and that of iron wheel light rail transit vehicle was 'good' to 'excellent'. These data are the results for three kinds of light rail transit vehicles and more data can be accumulated after further performance test. These data can be used for a reference for the design of light rail transit vehicles.

  • PDF

Electromechanical coupled nonlinear dynamics of euler beam rails for electromagnetic railgun

  • Xu, Lizhong;Wu, Dewen
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.213-224
    • /
    • 2017
  • The electromagnetic field can cause an essential change of the dynamic behavior of the railgun. The evaluation of the dynamics performance of railgun is a mandatory task. Here, a nonlinear electromagnetic force equation of the railgun is given in which the clearance, the thickness and the width of the rail are considered. Based on it, the nonlinear electromechanical coupled dynamics equations of Euler beam rails for the railgun are proposed. Using the equations, the nonlinear free vibration frequency of the railgun is investigated and the effects of the system parameters on the frequency are analyzed. The nonlinear forced responses of the rail to the electromagnetic excitation are investigated as well. The results show that as the nonlinearity of the railgun system is considered, the vibration frequencies of the railgun system increase; as the current in the rail increases, the difference between the natural frequencies and the nonlinear vibration frequencies increases significantly; the nonlinearity of the railgun system is more obvious for smaller distance between the two rails, smaller rail thickness, and smaller stiffness of the elastic foundation; the unstable dynamics state of the rail system occurs when the armature runs to the exit of the railgun. The results are useful for design and application of the railgun system.

경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석 (The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit)

  • 여인호;정원석;김성춘;김성일
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구 (Research on the Non-Contact Detection of Internal Defects in a Rail Using Ultrasonic Waves)

  • 한순우;조승현;김준우;허태훈
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.1010-1019
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be the cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

철도레일 복합 압전패드의 구성 차이에 따른 전압 발생 특성 분석 (Analysis of Voltage Generating Characteristics of Composite Rail Pad Composed of Piezoelectric PVDF Film and Polyurethane Bonding Materials)

  • 조호진;임유진;김성수;이종관
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.381-386
    • /
    • 2017
  • A railway track generates severe levels of vibrations. In order to reduce these vibrations and to provide structural stability, various rail pads, mats, etc., are used for vibration protection. In this study, a specially designed rail pad was developed to reduce vibration and to generate electric power simultaneously, that is, by using the vibrations generated by railway cars on the track. The newly developed rail pads were tested to evaluate the characteristics of electric power by investigating the generated voltage and the current levels and patterns. In addition, we proposed an optimal laminated structure and adhesive by comparing the voltage generated by each type of adhesive required for optimal adhesion of the rail pad and the piezoelectric device.

고속열차하중을 받는 슬래브궤도의 동적거동에 관한 연구 (A Study on Behavior of Concrete Slab Track subjected to High Speed Train Loads)

  • 조병완
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.485-492
    • /
    • 2000
  • In the rail facilities the rail track consists of rail tie fastening accessories and bed,. The rail track is largely divided into Ballast Bed Track(BBT) and Concrete Bed Track(CBT) according to the type of bed. In this thesis among Concrete Bed Track slab track which is used for the Japanese high speed railway is a target of this study. Dynamic analysis by using finite element method are performed. where moving rain load is periodic function. Then through parametric study some conclusions are obtained as follow. Cement Asphalt Mortar(CAM) affects contrary mechanical behavior to rail and slab greatly. Therefore change of CAM spring coefficient should be handled with care, For slab thickness thin slab is more profitable to reduction of vibration of rail than thick one but mechanical capacity of slab is deteriorated, Improved structural type is proposed then structural analysis is performed for this one. This type is effective to reduction of vibration of railway system.

  • PDF

커먼 레일 시스템 인젝터의 파라미터 변화에 따른 거동특성 해석 (Analysis of Behavior Characteristics of Common Rail System Injector for the Variations of Injector Parameters)

  • 김중배
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.499-508
    • /
    • 2009
  • This paper focuses on the modelling of common rail diesel injector using the AMESim code and shows the appropriateness of the developed model. For the developed injector model, simulations are carried out to analyze the behavior characteristics of the injector for the variations of injector model parameters such as orifice diameters, rail pressures, and energizing times. Simulation results show that the diameters of inlet and outlet orifices have close relation with injection quantity. Increment of rail pressure and energizing time provides increment of injection quantity, and simulated energizing time map shows injection characteristics of the common rail injector.