• 제목/요약/키워드: Rail surface

검색결과 265건 처리시간 0.028초

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

Experimental Study to analyze Effect of Rail Corrugation Reduction according to Rail Grinding (레일연마에 따른 레일 파상마모 저감 효과 분석을 위한 실험적 연구)

  • Choi, Jung-Youl;Jeong, Cheon-Man;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • 제7권4호
    • /
    • pp.801-806
    • /
    • 2021
  • Rail corrugation is continuously increasing due to the lack of maintenance regulations for the amount of rail irregularities. Rail corrugation is causing various problems, such as a decrease in ride comfort and an increase in the amount of track maintenance. In this paper, the effect of rail corrugation on the track force was analyzed by measuring the rail irregularities before and after rail grinding and the track measurements (dynamic wheel load, displacement, and acceleration) for the section where the rail corrugation occurred. In addition, it was experimentally proven that the rail grinding performed to reduce the corrugation of the rail was very effective in reducing the additional forces on the track.

Development and Performance Evaluation of Floor Level Joint System (다목적 바닥 레벨조인트 공법의 개발 및 성능평가에 관한 연구)

  • 최윤철;서수연;지남용;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.953-958
    • /
    • 2002
  • The finishing method of concrete floor using automatic surface finisher is one of new technologies in concrete floor construction. The development of high technologies in construction will increase in order to satisfy the demand to construct high quality building. Using this method, it is possible to increase the quality of building as well as to reduce the labor work in site. In this paper, a system which can be used to finish the concrete floor using automatic surface finisher, is presented and its structural capacities are evaluated. The system is composed of rail which guides the surface vibrator and absorbs the volume change of concrete, and a device supporting the rail. From the experimental work for these devices, it was shown that the support and rail had suitable strength to resist the automatic surface finisher. For design purpose, also, effective span of supports was tabulated.

  • PDF

A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail- (철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석-)

  • 김재철;구동회
    • Journal of KSNVE
    • /
    • 제10권3호
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

AAR's R&D Status on An Automated Measurement System for Wheel/Rail Contact Condition Inspection (미국철도협회의 차륜/레일 접촉상태 차상 자동검측 기술 개발 현황)

  • Chung, Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.115-118
    • /
    • 2007
  • The geometry of wheel and rail profiles is the primary contributor to wheel and rail interaction. These profiles interact to influence truck steering, vehicle lateral stability, wheel/rail wear and surface damage. Maintaining good control of the profiles is one of the keys to ensuring preferred wheel and rail interaction. Transportation Technology Center, Inc., Pueblo, Colorado, is developing an automated measurement system for wheel/rail contact condition inspections supported by AAR(Association of American Railroads). The system uses a modified version of $WRTOL^{TM}$ (Wheel/Rail Tolerances)--software that performs extensive analysis of wheel and rail contact conditions

  • PDF

A Study on the Contact Behavior of Stress-Displacement Characteristics for an Inclined Rail-Wheel Contact Mode (레일-휠의 접촉면 경사도에 따른 응력-변위량의 거동특성에 관한 연구)

  • 김청균
    • Journal of the Korean Society for Railway
    • /
    • 제7권3호
    • /
    • pp.186-192
    • /
    • 2004
  • Using the finite element method, rail-wheel contact model has been analyzed for mechanical loads due to passengers and payload of the train. This paper presents an investigation on how tapered wheel and inclined rail surfaces affect the contact stress and displacement of rail-wheel contacting surface under mechanical loads. For a numerical analysis, the tapered faces of the wheel are considered as 2.5% and 5.5%. And two models of the tilted rail are also considered as 40:1 and 20:1 at the bottom of the rail. The computed results based on the contact stress and displacement FE analysis indicate that the tilting ratio of the rail, 20:1 with a tapered face of the wheel, 2.5% may be more stable compared to that of 40:1 tilting model and 5.5% tapered wheel face.

Research for a factor affecting creep force at Wheel/Rail contact surface of Roller Rig (모의주행성능시험기의 차륜/레일 접촉부 CREEP FORCE에 미치는 영향 인자에 대한 연구)

  • Jeon, Seung-Woo;Koo, Dong-Hoe;Kim, Jae-Chul;Hwang, Seok-Youl
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.606-612
    • /
    • 2008
  • Creep force is one of the only appeared at conventional train which used to be driven by metallic wheel and rail contact. Due to the elastic deformation of wheel/rail contact patch by the weights of wheel and all the components related to it, creep force generates and becomes to the decision factor of critical speed of bogie(or railway vehicle) which is the criteria of avoiding vehicle to be unstable. There are many kind of factors which affect generation of creep force at a wheel/rail contact surface such as viscosity of contact patch, velocity, wheel and rail geometric profile, mechanical properties of wheel and rail. This paper concentrates on a wheelset simple 2 DOF Equation of Motion being exerted. From the simple numerical analysis using linear solution about getting creep force some factors could find roughly. Among the factors geometric parameter could be the one of most important for this study. In the future we'll prolong the range of study to find out method of measuring creep force easily.

  • PDF

Evaluation of Rail pad Stiffness Considering Stress of Rail (레일응력을 고려한 레일패드강성 결정)

  • Park, Dae-Geun;Kim, Jae-Hak;Son, Gi-Jun;Kim, Han-Jong
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.419-431
    • /
    • 2007
  • The track and rail surface geometry is of prime importance on the requirement for track dynamic stiffness, particularly for the speed of 350 km/h, for which both the requirement for fatigue and tensile strength limits require a lower stiffness than 100 kN/mm, which is near the value for ballasted track. However, the track quality has been considered as being the same for 350 km/h as that for 300 km/h, and based on ballasted track, and the track geometry may be kept in better condition with a slab track(probably more similar to the medium quality track geometry of ballasted track). In conclusion, under the condition that the track geometry quality provided by the concrete slab system is fairly good, and that the required maintenance is applied to the rail surface, there would be no safety risk if the fastening system point stiffness reaches 160 kN/mm for 300 km/h operation, and 110 N/mm at 350 km/h.

  • PDF

Dynamic Behavior of a Open-Deck Steel Bridge considering Surface Irregularities of Rail Joints (레일이음매에 의한 주행면 불규칙성을 고려한 판형교의 동적거동)

  • Kim Sung-Il;Kim Hyun-Min;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1028-1033
    • /
    • 2004
  • The open deck steel bridge is the most common type in railway bridges. Steel I-shaped girders are connected with sleepers directly without ballast and moving train loads are transmitted directly to the girder, so this bridge has weak characteristics on impact. Therefore, considerable accelerations can cause unsatisfactory dynamic behavior of the open deck steel bridge. Especially, Impact created at rail joints can increase the dynamic response of the bridge and this phenomenon would be injurious to passenger comfort. In the present study, dynamic behavior of the open deck steel bridge which has a rail joint is estimated through experimental studies and bridge-train interaction analysis considering surface irregularities by rail joints.

  • PDF

A Study on the Wear of Rail by Fracture Mechanics (파괴역학을 이용한 차륜과 레일의 마모에 관한 연구)

  • 구병춘
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.315-322
    • /
    • 1998
  • A two dimensional elasto-plastic finite element program taking into account contact between crack surfaces if developed in order to analyze subsurface cracking in rolling contact. But the friction between upper and lower surface of the crack is not considered. Under the assumptions of small deformation and small displacement, the incremental theory of plasticity is used to describe plastic deformation. J-integral is computed as the applied Hertzian load slides over the surface with friction. J-integral is correlated with wear rate of the rail. The propagation rate of the right tip of the surface crack is fast by 45% than that of the left side.

  • PDF