• 제목/요약/키워드: Rail noise

검색결과 367건 처리시간 0.028초

비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구 (Research on the Non-Contact Detection of Internal Defects in a Rail Using Ultrasonic Waves)

  • 한순우;조승현;김준우;허태훈
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.1010-1019
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be the cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교 (Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise)

  • 유정수;장승호
    • 한국철도학회논문집
    • /
    • 제16권2호
    • /
    • pp.85-92
    • /
    • 2013
  • 철도 전동 소음은 철도에서 발생하는 대표적인 소음으로서 차륜과 레일의 음향 조도에 의해 유기된다. 철도 전동 소음의 주요 소음원으로는 침목, 레일 그리고 차륜을 들 수 있다. 따라서 철도의 전동 소음을 해석하기 위해서는 차륜의 진동 특성과 함께 궤도의 진동을 해석하고 그 특성을 이해하는 작업이 수행되어야 한다. 본 논문에서는 전동 소음의 관점에서 레일의 진동을 해석하기 위한 이론적 궤도 모델링에 대해 기술하고, 국내의 대표적인 세 가지 철도 궤도에 대해 진동 해석을 수행하였다. 해석에 사용한 궤도로는 기존선 자갈 도상 궤도, KTX 자갈 도상 궤도, KTX 콘크리트 궤도를 선정하였으며, 각 궤도 별로 레일을 따라 진행하는 파동의 전파 특성을 해석하고 그 결과를 비교하였다. 해석 시 궤도는 이산 지지를 가진 Timoshenko 보로 모델링하였으며, 레일의 평균 진동 속도를 이용해 세 궤도 레일의 방사 소음 특성을 간접 비교하였다.

커먼 레일 시스템 인젝터의 파라미터 변화에 따른 거동특성 해석 (Analysis of Behavior Characteristics of Common Rail System Injector for the Variations of Injector Parameters)

  • 김중배
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.499-508
    • /
    • 2009
  • This paper focuses on the modelling of common rail diesel injector using the AMESim code and shows the appropriateness of the developed model. For the developed injector model, simulations are carried out to analyze the behavior characteristics of the injector for the variations of injector model parameters such as orifice diameters, rail pressures, and energizing times. Simulation results show that the diameters of inlet and outlet orifices have close relation with injection quantity. Increment of rail pressure and energizing time provides increment of injection quantity, and simulated energizing time map shows injection characteristics of the common rail injector.

레일두부 표면요철에 의한 열차주행 시 진동발생에 대한 분석 (Vibration Analysis on Rolling Stock running in Rail Head Surface Irregularity)

  • 이상배;이성욱;우병구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.988-991
    • /
    • 2006
  • Rolling Stock running are making Rail Head Surface damage(corrugation, flaking, shelling, etc). It's coming out Rail Head Surface Irregularity. It increases Rolling Stock and structure vibration. Therefore, this paper analyzes the influence of Rail Head Surface Irregularity to railway vibration. And, It introduces the management method of Rail Head Surface and proposes its R&D direction in railway-run organization.

  • PDF

레일 진동감쇄에 의한 소음방사 특성에 관한 연구 (A Study of Noise Radiation Characteristics by Rail Vibration Reduction)

  • 김진호;장동두;김희규
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2844-2850
    • /
    • 2015
  • 철도의 운행으로 인하여 발생하는 다양한 소음 중 큰 부분을 차지하고 있는 전동소음의 경우 차륜과 레일의 접촉에 의하여 진동과 이로 인한 소음방사가 발생하므로, 레일 진동에 대한 특성과 이로 인한 방사소음과의 상호연관성 및 특성의 파악이 필요하다. 본 연구에서는 레일의 유한요소 모델을 구성하고 경계요소법을 이용하여 진동으로 인해 발생하는 소음방사를 예측하였다. 입력으로는 레일에서의 진동속도 계측치를 이용하였고 소음방사 예측결과를 계측결과와 비교하여 해석기법의 신뢰성을 검증하였다. 또한 레일 감쇄 특성에 따른 소음방사 특성을 주파수 영역에서 검토하여 레일 댐핑재의 적용에 따라 약 3dB(A)의 방사소음 저감 효과가 있음을 확인하였다.

역해석 기법을 활용한 철도 소음${\cdot}$진동 예측에 관한 연구 (A Study on the prediction of rail noise and vibration using the Input identification.)

  • 신한철;조선규;양신추;최준성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.516-521
    • /
    • 2005
  • Recently the railway becomes principal transportation on account of the important role in mass transit and commute in urban area. However, rail noise and vibration raise a major problem for the residents living nearby railway track. At that point of view, the effective counterplan for the soundproofing and protection of vibration has to be considered in the process of railway design. Therefore, the reliable computation of load caused by running train on rail is very important to estimate vibration of structure adjacent to railway. In this study, Input identification is used for the calculation of load and vibration, induced by high speed train on rail. The influence of railroad noise and vibration on structure is evaluated using the 3-D Finite element method and the reliability of the evaluation is discussed comparing with the results of the field measurements.

  • PDF

철도차량의 곡선부 스킬 소음에 대한 속도의 영향 (Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles)

  • 이찬우;김재철
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

철도환경소음을 줄이기 위한 소음감소기의 설치제안 (Installation Effect on Noise Reducer for Railway Traffic Noise)

  • 김정태;홍윤혁
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.278-283
    • /
    • 2007
  • Community noise, especially a rail traffic noise has been serious social issues in Korea. Our society needs practical tools to reduce noise levels for public who live near the railway lines. This paper proposes a noise reducer for railway traffic noise. At the beginning, various types of reducers are discussed, with the advantages and disadvantages with respect to acoustical phenomena. Then, the acoustic effects are discussed based on an insertion loss measurement. After several types of reduces are installed at fields, the noise level is monitored with and without the reducer. The result shows that the proper selection of reducers affects the noise level by 6 dB. The statistics of the mean and a standard deviation turns out to be 3.2 dB and 0.8 dB, respectively. Noise reducers are strongly recommended for the place where apartments are densely constructed alone the railway. Installation of noise reducers seems to be an effective and practical solution for the community traffic noise reduction.

전라선 고가교 방음터널 효과검증 (The Verification on Effect of Sound Absorption Tunnel for Elevated Railway in Cholla Line)

  • 김병삼;이태근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.667-672
    • /
    • 2007
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

고가철교 방음터널 효과검증 (The Verification on Effect of Sound Absorption Tunnel for Elevated Railway)

  • 김형두
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.