• 제목/요약/키워드: Raf-1

검색결과 101건 처리시간 0.029초

천년초 발효물의 라디칼 소거능 (Radical-Scavenging Activities of Fermented Cactus Cladodes (Opuntia humifusa Raf.))

  • 김주성
    • 한국식품영양학회지
    • /
    • 제29권2호
    • /
    • pp.200-205
    • /
    • 2016
  • The aim of this work was to select suitable fermentation treatments for the efficient bioconversion of cactus (Opuntia humifusa Raf.) bioactive components with an improved radical scavenging activity for use as a nutraceutical. To obtain microorganisms for the microbial conversion of cactus, Leuconostoc mesenteroides ATCC8294, Lactobacillus plantarum KCTC 3099, Lactobacillus plantarum KERI 236 and Monascus pilosus KCCM 60029 (ATCC 22080) were used for fermentation. Fermentation by Lac. plantarum KCTC 3099 was the most effective at scavenging 1,1-diphenyl-2-picrylhydrazyl hydrate (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and reducing iron (III). In particular, uronic acid levels showed a remarkable increase in fermentation. The polyphenol and quercetin content of the fermented cactus showed large increases from $108.65{\mu}g/mL$ and $2.71{\mu}g/mL$ to $227.83{\mu}g/mL$ and $9.73{\mu}g/mL$, respectively, showing a maximum level at 36 h of fermentation with Lac. plantarum KCTC 3099. Thus, cactus fermentation with Lac. plantarum is an useful process for the enhancement of antioxidant contents and activity of fresh cactus.

당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과 (Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells)

  • 김병완;윤현정;전현숙;윤형중;김창현;박선동
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Noonan syndrome and RASopathies: Clinical features, diagnosis and management

  • Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Noonan syndrome (NS) and NS-related disorders (cardio-facio-cutaneous syndrome, Costello syndrome, NS with multiple lentigines, or LEOPARD [lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth and sensory neural deafness] syndrome) are collectively named as RASopathies. Clinical presentations are similar, featured with typical facial features, short stature, intellectual disability, ectodermal abnormalities, congenital heart diseases, chest & skeletal deformity and delayed puberty. During past decades, molecular etiologies of RASopathies have been growingly discovered. The functional perturbations of the RAS-mitogen-activated protein kinase pathway are resulted from the mutation of more than 20 genes (PTPN11, SOS1, RAF1, SHOC2, BRAF, KRAS, NRAS, HRAS, MEK1, MEK2, CBL, SOS2, RIT, RRAS, RASA2, SPRY1, LZTR1, MAP3K8, MYST4, A2ML1, RRAS2). The PTPN11 (40-50%), SOS1 (10-20%), RAF1 (3-17%), and RIT1 (5-9%) mutations are common in NS patients. In this review, the constellation of overlapping clinical features of RASopathies will be described based on genotype as well as their differential diagnostic points and management.

Flavonoids from the Stems of Eastern Picklypear Opuntia humifusa, Cactaceae

  • Park, Si-Hyung;Kim, Hui;Rhyu, Dong-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.254-258
    • /
    • 2007
  • Five flavonoids, isorhamnetin 3-O-${\beta}$-D-galactosyl-4'-O-${\beta}$-D-glucoside (1), isorhamnetin 3,4'-di-O-${\beta}$-D-glucoside (2), isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl)glucosyl-4'-O-${\beta}$-D-glucoside (3), isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl)glucoside (4), and isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl) galactoside (5) were isolated from the stems of Opuntia humifusa (Raf.) Raf. and their structures were identified based on LC-MS and NMR data.

Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells

  • Ahn, Jun-Ho;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.320-326
    • /
    • 2015
  • The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.

Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

  • Koo, JaeHyung;Wang, Sen;Kang, NaNa;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.370-375
    • /
    • 2016
  • Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway.

환경친화적 미생물비료 자원 Pseudomonas fluorescens RAF15에 의한 가용성 인산 생산에 영향을 미치는 조건 (Conditions for Soluble Phosphate Production by Environment-Friendly Biofertilizer Resources, Pseudomonas fluorescens)

  • 박기현;박근태;김성만;이충열;손홍주
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1033-1037
    • /
    • 2008
  • The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of $MgCl_2{\cdot}6H_2O$ and $MgSO_4{\cdot}7H_2O$ in the medium. Supplementation of medium with 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% $MgCl_2{\cdot}6H_2O$, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$ and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Clinical implications of the Hippo-YAP pathway in multiple cancer contexts

  • Kim, Han-Byul;Myung, Seung-Jae
    • BMB Reports
    • /
    • 제51권3호
    • /
    • pp.119-125
    • /
    • 2018
  • The Hippo pathway plays prominent and widespread roles in various forms of human carcinogenesis. Specifically, the Yes-associated protein (YAP), a downstream effector of the Hippo pathway, can lead to excessive cell proliferation and the inhibition of apoptosis, resulting in tumorigenesis. It was reported that the YAP is strongly elevated in multiple types of human malignancies such as breast, lung, small intestine, colon, and liver cancers. Recent work indicates that, surprisingly, Hippo signaling components' (SAV1, MST1/2, Lats1/2) mutations are virtually absent in human cancer, rendering this signaling an unlikely candidate to explain the vigorous activation of the YAP in most, if not all human tumors and an activated YAP promotes the resistance to RAF-, MAPK/ERK Kinase (MEK)-, and Epidermal growth factor receptor (EGFR)-targeted inhibitor therapy. The analysis of YAP expressions can facilitate the identification of patients who respond better to an anti-cancer drug treatment comprising RAF-, MEK-, and EGFR-targeted inhibitors. The prominence of YAP for those aspects of cancer biology denotes that these factors are ideal targets for the development of anti-cancer medications. Therefore, our report strongly indicates that the YAP is of potential prognostic utility and druggability in various human cancers.