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Fig. 1. Models of the Hippo pathway in mammals. The Hippo 
pathway regulation is shown here: When the YAP is relieved 
from inhibition through phosphorylation-dependent or -independent
mechanisms in mammals, its nuclear translocation leads the target 
gene expression into the regulation of cellular proliferation, 
apoptosis, and differentiation.
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The Hippo pathway plays prominent and widespread roles in 
various forms of human carcinogenesis. Specifically, the 
Yes-associated protein (YAP), a downstream effector of the 
Hippo pathway, can lead to excessive cell proliferation and 
the inhibition of apoptosis, resulting in tumorigenesis. It was 
reported that the YAP is strongly elevated in multiple types of 
human malignancies such as breast, lung, small intestine, 
colon, and liver cancers. Recent work indicates that, 
surprisingly, Hippo signaling components’ (SAV1, MST1/2, 
Lats1/2) mutations are virtually absent in human cancer, 
rendering this signaling an unlikely candidate to explain the 
vigorous activation of the YAP in most, if not all human tumors 
and an activated YAP promotes the resistance to RAF-, 
MAPK/ERK Kinase (MEK)-, and Epidermal growth factor 
receptor (EGFR)-targeted inhibitor therapy. The analysis of YAP 
expressions can facilitate the identification of patients who 
respond better to an anti-cancer drug treatment comprising 
RAF-, MEK-, and EGFR-targeted inhibitors. The prominence of 
YAP for those aspects of cancer biology denotes that these 
factors are ideal targets for the development of anti-cancer 
medications. Therefore, our report strongly indicates that the 
YAP is of potential prognostic utility and druggability in 
various human cancers. [BMB Reports 2018; 51(3): 119-125]

INTRODUCTION

During the past decade, research on the biology and 
regulation of the Hippo pathway gained impetus from 
pioneering Drosophila studies (1-4). Intensive research on 
Drosophila genetics has been instrumental for our current 
knowledge about the Hippo pathway (5-8). Many of these 
genes were in the Hippo pathway, suggesting that the Hippo 

plays a vital role in the development and growth of Drosophila 
(4, 9-12). In a recent study, the Hippo pathway functioned as a 
regulator of tissue growth that would be considered a tumor 
suppressor pathway of human cancer in neoplastic organs (8, 
13-16). In addition, the growing body of evidence connecting 
YAP to cancer biology encourages the translation of preclinical 
findings into clinical research (13, 17-20). Therefore, in this 
review, we examine human carcinogenesis related to the 
Hippo pathway. 

The Hippo pathway is a highly conserved regulator of organ 
size as well as of stem cell proliferation and maintenance (6, 14, 
21). It regulates the Yes-associated protein – a co-transcriptional 
factor – in a negative manner. The Hippo core component, 
composed of the kinase MST1/2, LATS1/2, and the adaptor 
protein SAV1 inhibitively phosphorylates the Hippo pathway 
terminal downstream YAP (Fig. 1). Mechanically, activated 
MST1/2 kinase associates with its scaffolding partners SAV1 and 
phosphorylate LATS1/2, resulting in a LAT1/2 activation (6, 8, 
15). The activated LATS1/2 kinase then advances to 
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phosphorylate YAP on the phosphorylation site, leading to the 
inactivation of YAP by cytoplasmic sequestering and degradation 
(Fig. 1) (22, 23). In case that the SAV1-MST1/2-LATS1/2 cascade 
axis is inactive, YAP can accumulate in the nucleus and function 
as co-transcription factors by interacting with the transcriptional 
enhancer factor (TEF) family of transcription factors (TEAD) (Fig. 
1) (24). The inactivation of the Hippo pathway could lead to 
excessive cell proliferation and the inhibition of apoptosis, 
resulting in tumorigenesis. It has been confirmed that the 
expression of YAP was increased in various organs of human 
cancer (14, 17, 19). Therefore, abnormal YAP expressions are 
strongly associated with the occurrence, development, and 
prognosis of cancers, which is a phenomenon that has become a 
favorite topic of cancer research.

For many years, the development of new effective therapies 
has progressed and dramatically improved survival rates 
(25-29). Nevertheless, it occurs even in significantly positive 
clinical responses to chemotherapeutic and targeted therapies 
that a complete remission is hardly durable, since almost all 
cancers acquire an anti-cancer drug resistance (17, 30-34) 
which can even be considered a key property of malignant 
growths. The drug resistance mechanisms are not fully 
understood, but they are particularly important in designing 
novel targeted therapies aimed at preventing this resistance 
(30, 35). To address this issue, we identify YAP as a key 
survival input that mediates drug resistance in parallel to 
several known independent pathways of tumorigenesis (17, 
36-47).

PART 1. YAP IN HUMAN CANCER

The analysis of clinical-pathological and biological results 
demonstrates that the increased activation and expression of 
YAP was correlated with the stage and prognoses of tumors 
(42, 44, 47-55). Specifically, these current views about the 
Hippo pathway are consistent with numerous previous studies 
reporting that a YAP activation or expression corresponds to 
cancer evolution and progression (14, 18-20, 56). Thus, we 
suggest that the YAP – as a potential oncogene – is a promising 
independent prognostic biomarker of various cancers. 

Lung cancer
Lung cancer includes several subtypes, including lung 
adenocarcinomas (LACs), lung squamous cell carncinomas 
(LSCCs), and large-cell lung carcinomas, which are all 
generally defined as non-small-cell lung cancers (NSCLCs). 
NSCLCs are responsible for most mortalities among cancers 
(57-59). Recent clinical research reported that the expressions 
or nuclear staining of YAP were elevated in NSCLCs (14, 39, 
60, 61). A hyper-activation of the YAP level was associated 
with an overall shorter patient survival rate. NSCLC 
immunohistochemistry found that a YAP up-regulation is 
relevant for a high histology score, the lung cancer stage, 
metastases, and a poor cancer progression. The increased 

expression of YAP target genes correlated with a poor disease 
progression as evidenced in a cancer database of NSCLC 
patients (14, 39, 42, 55). In addition, Chaeuk chung groups 
reported that an elevated YAP in NSCLC specimens obtained 
from the development of acquired EGFR inhibitors resistance 
(60, 61). Among seven cases, six drug-resistant patients 
exhibited increased nuclear YAP staining as compared with 
their baseline. Additionally, they and other groups showed that 
the combination therapy of an EGFR inhibitor and a YAP 
inhibitor overcame the EGFR inhibitors’ resistance in acquired 
EGFR inhibitor-resistant lung cancer cells (42, 62, 63). These 
results implicate that the YAP is closely related to the EGFR 
inhibitor resistance development and might itself be a critical 
therapeutic target. Therefore, a pre-clinical analysis with a YAP 
inhibitor and an EGFR inhibitor is needed to validate the 
ability of such regimen to overcome the EGFR inhibitor 
resistance in cancer therapy.

Breast cancer
Breast cancer is the most common cancer type among 
US-American women with one out of eight developing it. A 
breast cancer is a malignant tumor arising from the cells of the 
breast (64). There are many breast cancer types that differ in 
their capability of spreading (metastasize) to other body 
tissues. Breast cancer can be classified by the tumor’s site of 
origin, the stroma surrounding the gland, or the ability to grow 
in the lumen of the gland (64). Breast cancer cells have 
receptors on their surface as well as in their cytoplasm and 
nucleus (64). Chemical messengers such as hormones bind to 
receptors which causes cell changes. Breast cancer cells may 
or may not have three important receptors: Estrogen receptor 
(ERs), Progesterone receptor (PRs), and Human epidermal 
growth factor receptor 2 (HER2). The most common forms of 
breast cancer can be classified into hormone hormone- 
receptor-positive breast cancer (involving estrogen and/or 
progesterone), HER2-positive breast cancer, and breast cancers 
that are negative for all three receptors (triple-negative breast 
cancer [TNBC]) (54, 64). In this review, we demonstrated that 
the hyper-activation of YAP in breast cancer tissues related 
directly to the PR status, a luminal subtype, and inversely with 
HER2 and Ki67 levels. TAZ, as the paralog of the YAP, also 
plays an important role in the tumorigenesis of breast cancer 
cells and is overexpressed in about 20% of all human breast 
cancers (54). In breast cancer, the hyper-activation of a 
YAP/TAZ-transcriptional program feeds various tumorigeneses 
(36, 54). An important oncogenic function of TAZ relates to its 
association with BC stem cells (BCSCs) (65-68). In particular, 
several studies reported a connection between TAZ and the 
self-renewal of BCSCs (66, 68, 69). However, several recent 
controversial results showed that mention relates to the 
biological significance of YAP in breast cancer. The YAP 
regulation has shown opposite or different results (70, 71). 
There are directly opposing ideas about the tumor-promoting 
function of YAP that are, in turn, countered by some clinical 
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evidence, at least with regard to triple-negative BCs (36, 54). 
Indeed, another research group has recently reported the 
relation between a reduced YAP expression/activation and 
decreased recurrence-free survival in luminal tumors (50, 53, 
72). This clinical evidence supports that, at least in TNBC, YAP 
may possess an oncogenic character. It is plausible that a YAP 
acts differently in a distinct breast cancer class. The growing 
interest in YAP related to breast cancer has promoted a wave 
of research on other breast cancer subtypes. The results from 
these studies will explain the exact mechanisms underlying the 
clinical significance of YAP/TAZ in individual breast cancer 
subtypes.

Colon cancer
Colorectal cancer (CRC) remains a leading cause of cancer 
death, with one million new cases each year worldwide and as 
many as half a million cancer deaths annually. The disease 
begins as a benign adenomatous polyp which develops into an 
advanced adenoma with high-grade dysplasia and then 
progresses to an invasive cancer. The development of 
colorectal cancer (CRC) involves the accumulation of genetic 
alterations and epigenomic changes that affect cell growth, cell 
death, and the tumor’s microenvironment (73, 74). YAP play 
key roles in the development of colorectal cancer as 
evidenced by biological and clinical colon cancer data (20, 
75, 76). In microarray datasets of colorectal cancer patients, an 
increased expression of gene signatures for YAP activity 
related to a high histological grade, an enrichment of colon 
stem cell signatures, metastasis characteristics, and cancer 
progression. Recently, Keun-Wook Lee and colleagues 
demonstrated that the up-regulation of YAP is strongly related 
with resistance in cetuximab therapy of colorectal cancer 
patients (77). Among the cancer patients with wild-type KRAS, 
only those without a YAP activation benefited from the 
cetuximab treatment. This clinical result provides robust 
evidence for the YAP activation as an important prognostic 
marker of EGFR inhibitor therapy. Similarly, several studies 
also identified YAP as potential biomarkers for EGFR inhibitor 
resistance in head and neck cancers (78). In addition, we 
demonstrated for the first time that elevated expressions of the 
YAP and PGE2 are highly correlated with human 
colitis-associated cancers and colorectal cancer (75). These 
results demonstrated that inhibitors of YAP may create synergy 
with non-steroidal anti-inflammatory drugs (COX inhibitors), 
both in colon cancer prevention and possibly in the inhibition 
of tumor growth. Therefore, our review suggests that YAP are 
strongly associated with a poor prognosis and development for 
colorectal cancer.

Liver cancer
A cancer that originates in the liver is called a primary liver 
cancer. There is more than one kind of primary liver cancer. 
Examples are the hepatocellular carcinoma (HCC), cholangio-
carcinomas (CCs), and hepatoblastomas (HBs). The most 

frequent liver cancer, accounting for approximately 75% of all 
primary liver cancers, is a hepatocellular carcinoma (HCC) 
(79-81). A number of pre-clinical and clinical investigations 
demonstrates that the expression or nuclear staining of YAP 
was elevated in HCCs, CCs, and HBs. A YAP hyper-activation 
was associated with an overall shorter patient survival rate. 
HCC immunochemistry led to increased nuclear staining of 
YAP, relevant for a high histology score, the cancer stage, 
metastasis, and a poor cancer progression (82-86). Also, 
hepatic tumors including HCC and CC are a remarkable 
feature of the Hippo pathway in genetically modified mice 
(MST1/2, Sav1 and LATs1/2 knock-out mouse, YAP 
overexpression mouse) (14, 39, 55, 84). Not long ago, the 
research group of Eek-Hoon Jho demonstrated that high levels 
of YOD1 – an intrinsic positive regulator of YAP which 
functions as an oncogene – in liver cancers of both mouse and 
human liver tumor tissues exhibited a strong correlation with 
YAP levels (82). AREG, a secreted protein and a member of 
the epidermal growth factor family, was recently reported to 
be a target gene of YAP. YAP was correlated with a high serum 
AFP level and an elevated AFP expression in HCC (87). This 
information suggests that other signaling networks promote 
up-regulation, even in the presence of normal Hippo pathway 
tumor suppressor kinases. It is an important task to develop 
predictive biomarkers for therapies that are targeted at the 
Hippo pathway in clinical trials.

Stomach cancer
Stomach cancer, also called gastric cancer, is a cancer that 
derives from the glandular epithelium of the stomach. These 
gastric cells can grow into a tumor. It has been reported that 
increased YAP mRNA and protein levels in gastric cancers are 
correlated with metastases, the cancer stage, and poor 
outcomes for the patients (88-90). In addition, the expression 
of YAP target genes and of YAP mRNA itself was elevated in a 
preclinical model of gastric cancer, generated by an infection 
with helicobacter pylori which is a common risk factor for 
stomach cancer development in humans (18). VGLL4 is a 
natural antagonist of YAP and its TDU region suffices for a 
YAP inhibition, allowing the development of a peptide-based 
YAP inhibitor (18, 47). This peptide drug strongly inhibits 
stomach cancer growth which presents an opportunity for 
treating gastric cancer. Such a peptide drug development 
strategy can be extended to YAP-dependent cancer types.

Anti-cancer drug resistance
Cancer cells with up-regulated YAP exhibit a resistance to 
anti-cancer drugs. An activated YAP promotes drug resistance 
to RAF, MEK, and EGFR inhibitors in various cancer cell lines 
as well as in human cancer patients with activating-BRAF, 
K-RAS, and mutant EGFR cancer (17, 42, 45, 60-63, 77, 78). In 
immunostaining of patients’ BRAF mutation melanoma tissues, 
up-regulated YAP expressions were correlated with the 
responsiveness to RAF/MEK inhibitors. A knock-down of the 
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YAP-elevated cancer cell sensitivity to RAF and MEK inhibitors 
with this effect demonstrated a many of cancer cell – lung, 
melanoma, and colon cancer cell lines. A therapy combining 
YAP and RAF or MEK inhibitors terminated both BRAF and 
RAS-mutant cancer cell lines. Therefore, YAP activity predicts 
the therapy effect of RAF and MEK inhibitors in activated 
MAPK-signaling cancer patients. An activated YAP is related to 
anti-cancer drug resistance in three non-small cell lung cancer 
(NSCLC) lines (HCC827, H1975, and A549), generated to 
induce resistance to EGFR inhibitors (42, 60, 61). These cell 
lines elevated the expression or translocation of YAP in the 
nucleus. Silencing of YAP resulted in re-sensitizing the 
drug-resistant cells to an EGFR inhibitor (gefitinib and 
erlotinib) while the combination of an EGFR inhibitor and a 
YAP inhibitor significantly overcame the EGFR inhibitor 
resistance. Thus, YAP emerged as critical oncogenes in drug 
resistance.

PART 2. THE HIPPO PATHWAY – YAP AS A POTENTIAL 
THERAPEUTIC ANTI-CANCER TARGET

As discussed above, YAP inhibitors present important 
challenges, including the identification of druggable 
components (17, 38, 40, 43, 45, 55). The most attractive 
therapeutic target is the essential oncogene YAP as the 
terminal protein of the Hippo pathway. The inhibition of YAP 
in various cancers is of interest as an anticancer therapeutic 
strategy. The therapeutic effect of a YAP inhibition is mostly 
based on genetic (knock-out) studies with mice which 
demonstrate that the heterozygosity of YAP represses cancer 
development. For instance, colon cancer development in Sav1 
and MST1/2-deficient colons was repressed by a YAP knock-out 
or heterozygosity (91, 92). For successful developments of 
YAP inhibitor strategies, a human cancer must be depend on 
the Hippo pathway-YAP in targeted therapy. 

The co-crystal structure of the YAP-TEAD binding domain 
was identified (52, 93, 94). and therefore, disrupting YAP 
transcriptional mechanisms block the interaction of YAP to 
TEAD binding. Verteporfin (VP) which is a FDA-approved 
photosensitizing small molecule compound used in the 
photodynamic therapy of neo-vascular macular degeneration 
that blocks YAP-TEAD binding was identified by the John 
Hopkins Drug Library via high-throughput screening (85). VP 
inhibited liver overgrowth resulting from the overexpression or 
hyper-activation of YAP by silencing Hippo kinase components. 

Another strategy of YAP-TEAD inhibition involves an 
inhibitor peptide competing with the YAP for TEAD binding. 
The inhibitor peptide was identified in the TDU domain of 
VGLL4, a YAP antagonist, which potently inhibits the 
YAP-dependent tumorigenic potential of gastric cancer cells, 
both in vitro and in vivo (18, 47). This VGLL4-mimicking 
peptide, which was designed with a VGLL4 sequence, 
interacts with TEAD in a way that excludes YAP. In sum, such 
results demonstrate that the pharmacological intervention with 

a YAP-TEAD complex formation is a potential therapeutic 
approach with few side effects. 

DISCUSSION

Many study results provide evidence for the Hippo pathway 
component’s role in cancer development and in the elevated 
expression or hyper-activation of YAP in human tumors 
regarding various aspects of cancer biology at the cell and 
tissue level. A dysregulation of this mechanism is unlikely to 
explain the YAP activation in cancers. For example, with the 
exception of NF2, mutations of upstream Hippo components 
are rarely found in cancers. In addition, not a single case of a 
YAP mutation by itself has been reported. The mRNA level of 
YAP correlates with target gene expressions and cancer 
progressions. This YAP activity is strongly related to cancer 
development and anti-cancer drug resistance. During the past 
few years, our knowledge of the Hippo pathway in both mice 
and humans has largely increased. Also, important drugs were 
proven to modulate the YAP and the development of new 
medications in pre-clinical trials and genetic mouse models is 
ongoing. The YAP may represent an essential molecular target 
for cancer therapy, although further research is underway to 
identify other YAP regulators. Particularly the inhibition with a 
YAP-TEAD complex is of central interest in the development of 
new anti-cancer drugs. Since the YAP-TEAD complex is 
regulated by a protein-protein interaction (PPI) which could 
serve potentially as a target for inhibition, more selective PPI 
drugs might also be needed to treat cancer patients. VP as a 
drug already approved by the FDA could serve as reference to 
develop new YAP inhibitors. Finally, several promising novel 
YAP inhibitors are currently pre-clinically tested and may soon 
be subjected to clinical trials. 
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