Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.007

Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells  

Ahn, Jun-Ho (Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Han, Byeal-I (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Publication Information
Biomolecules & Therapeutics / v.23, no.4, 2015 , pp. 320-326 More about this Journal
Abstract
The clinical benefits of oncogenic BRAF inhibitor therapies are limited by the emergence of drug resistance. In this study, we investigated the role of a negative regulator of the MAPK pathway, Spry2, in acquired resistance using BRAF inhibitor-resistant derivatives of the BRAF-V600E melanoma (A375P/Mdr). Real-time RT-PCR analysis indicated that the expression of Spry2 was higher in A375P cells harboring the BRAF V600E mutation compared with wild-type BRAF-bearing cells (SK-MEL-2) that are resistant to BRAF inhibitors. This result suggests the ability of BRAF V600E to evade feedback suppression in cell lines with BRAF V600E mutations despite high Spry2 expression. Most interestingly, Spry2 exhibited strongly reduced expression in A375P/Mdr cells with acquired resistance to BRAF inhibitors. Furthermore, the overexpression of Spry2 partially restored sensitivity to the BRAF inhibitor PLX4720 in two BRAF inhibitor-resistant cells, indicating a positive role for Spry2 in the growth inhibition induced by BRAF inhibitors. On the other hand, long-term treatment with PLX4720 induced pERK reactivation following BRAF inhibition in A375P cells, indicating that negative feedback including Spry2 may be bypassed in BRAF mutant melanoma cells. In addition, the siRNA-mediated knockdown of Raf-1 attenuated the rebound activation of ERK stimulated by PLX4720 in A375P cells, strongly suggesting the positive role of Raf-1 kinase in ERK activation in response to BRAF inhibition. Taken together, these data suggest that RAF signaling may be released from negative feedback inhibition through interacting with Spry2, leading to ERK rebound and, consequently, the induction of acquired resistance to BRAF inhibitors.
Keywords
BRAF inhibitor; Spry2; Negative feedback; Melanoma; Acquired resistance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263.   DOI
2 Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J. S., Springer, C. J., Pritchard, C. and Marais, R. (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221.   DOI
3 Holderfield, M., Deuker, M. M., McCormick, F. and McMahon, M. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455-467.   DOI
4 Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C. and Garraway, L. A. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972.   DOI
5 Joseph, E. W., Pratilas, C. A., Poulikakos, P. I., Tadi, M., Wang, W., Taylor, B. S., Halilovic, E., Persaud, Y., Xing, F., Viale, A., Tsai, J., Chapman, P. B., Bollag, G., Solit, D. B. and Rosen, N. (2010) The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. U.S.A. 107, 14903-14908.   DOI
6 Kim, Y. K., Ahn, S. K. and Lee, M. (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett. 320, 215-224.   DOI
7 Lito, P., Pratilas, C. A., Joseph, E. W., Tadi, M., Halilovic, E., Zubrowski, M., Huang, A., Wong, W. L., Callahan, M. K., Merghoub, T., Wolchok, J. D., de Stanchina, E., Chandarlapaty, S., Poulikakos, P. I., Fagin, J. A. and Rosen, N. (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668-682.   DOI
8 Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.   DOI
9 McGettigan, S. (2014) Dabrafenib: a new therapy for use in BRAF-mutated metastatic melanoma. J. Adv. Pract. Oncol. 5, 211-215.
10 Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A. and Lo, R. S. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973-977.   DOI
11 Poulikakos, P. I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., Shi, H., Atefi, M., Titz, B., Gabay, M. T., Salton, M., Dahlman, K. B., Tadi, M., Wargo, J. A., Flaherty, K. T., Kelley, M. C., Misteli, T., Chapman, P. B., Sosman, J. A., Graeber, T. G., Ribas, A., Lo, R. S., Rosen, N. and Solit, D. B. (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387-390.   DOI
12 Pratilas, C. A., Taylor, B. S., Ye, Q., Viale, A., Sander, C., Solit, D. B. and Rosen, N. (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. U.S.A. 106, 4519-4524.   DOI
13 Tsavachidou, D., Coleman, M. L., Athanasiadis, G., Li, S., Licht, J. D., Olson, M. F. and Weber, B. L. (2004) SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res. 64, 5556-5559.   DOI
14 Pratilas, C. A., Xing, F. and Solit, D. B. (2012) Targeting oncogenic BRAF in human cancer. Curr. Top. Microbiol. Immunol. 355, 83-98.
15 Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., Haydu, L. E., Mijatov, B., Becker, T. M., Boyd, S. C., Howle, J., Saw, R., Thompson, J. F., Kefford, R. F., Scolyer, R. A. and Long, G. V. (2014) BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965-1977.   DOI
16 Sabbatino, F., Wang, Y., Wang, X., Ferrone, S. and Ferrone, C. R. (2013) Emerging BRAF inhibitors for melanoma. Expert Opin. Emerg. Drugs 18, 431-443.   DOI
17 Xu, L., Zhou, J. L., Cohen, M., Bar-Sagi, D. and Patel, K. N. (2010) Spry2 expression correlates with BRAF mutation in thyroid cancer. Surgery 148, 1282-1287.   DOI
18 Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S. M., Lim, J., Lo, T. L., Leong, F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP Kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201.   DOI
19 Ahn, J. H., Kim, Y. K. and Lee, M. (2011) Decreased interaction of Raf-1 with its negative regulator Spry2 as a mechanism for acquired drug resistance. Biolmol. Ther. 19, 174-180.   DOI
20 Ahn, J. H., Eum, K. H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211.   DOI
21 Ahn, J. H. and Lee, M. (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol. Ther. 21, 114-120.   DOI
22 Ahn, J. H. and Lee, M. (2014) The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors. Mol. Cell. Biochem. 392, 239-247.   DOI
23 Aplin, A. E., Kaplan, F. M. and Shao, Y. (2011) Mechanisms of resistance to RAF inhibitors in melanoma. J. Invest. Dermatol. 131, 1817-1820.   DOI
24 Dultz, L. A., Dhar, S., Ogilvie, J. B., Heller, K. S., Bar-Sagi, D. and Patel, K. N. (2013) Clinical and therapeutic implications of Sprouty2 feedback dysregulation in BRAF V600E-mutation-positive papillary thyroid cancer. Surgery 154, 1239-1244.   DOI
25 Brady, S. C., Coleman, M. L., Munro, J., Feller, S. M., Morrice, N. A. and Olson, M. F. (2009) Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation. Cancer Res. 69, 6773-6781.   DOI
26 Chandarlapaty, S. (2012) Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov. 2, 311-319.   DOI
27 Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. and Futreal, P. A. (2002) Mutations of the B-Raf gene in human cancer. Nature 417, 949-954.   DOI
28 Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K. and Chapman, P. B. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809-819.   DOI
29 Gross, I., Bassit, B., Benezra, M. and Licht, J. D. (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem. 276, 46460-46468.   DOI