• Title/Summary/Keyword: Radon

Search Result 465, Processing Time 0.035 seconds

Influence of Ventilation on the Subway Radon Level (환기에 의한 지하 역의 라돈농도 변화)

  • 박덕신;정우성;정병철
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.62-67
    • /
    • 2000
  • Modern people stay at indoor places about 90% of a day. Radon-222 is a gas produced by the radioactive decay of the element radium. And, radon is one of the major indoor air pollutants. Radon moves into the underground space through various routes and is considered to cause lung cancer by hurting the lung tissues. In this study, we measured the subway radon level at 9 stations of 3 lines. According to test results, we can figure out the concentration of radon by lines, times, and measuring points. So, it was found that ventilation conditions are the most important factors in the subway air quality. Finally, we suggested effective and economic management methods of air pollution in the subway.

  • PDF

Development of A Multipurpose Passive Type Radon Monitor (다목적 수동형 라돈농도 측정기 개발)

  • Lee, Bong-Jae;Park, Yeong-Ung
    • Radioisotope journal
    • /
    • v.21 no.4
    • /
    • pp.55-65
    • /
    • 2006
  • A passive type radon monitor adopting two silicon PIN detector as radiation detector has been developed, manufactured and test-evaluated. A radiation signal processing circuit has been electronically tested and then the radiation detection characteristics of this instrument has been performance-tested by using reference radon concentration and a reference photon radiation field. As a result, in a electronic performance test, radiation signals from each detector were well observed in each signal processing circuit. The radiation detection sensitivity of this instrument after several test-irradiations to a Cs-137 gamma radiation source and a standard radon concentration appeared to be 1.37 cph/$\mu$Svh-1 and 1.66 pCi/L respectively. The developed radon monitor in this paper could be used conveniently in monitoring of radon concentration in buildings which population utilize in Korea.

  • PDF

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

A Study on Indoor Radon Concentrations in Seoul( I ) (서울 일부지역(一部地域)의 실내(室內) Radon 오염도(汚染度) 조사(調査) 연구(硏究)( I ))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • This study was conducted to find out the indoor radon concentrations from Jan. 1, to Dec. 31, 1995 in Seoul, and the following results were achieved; 1. The average concentration of indoor radon ranged from $0.51pCi/\ell$ to $0.78pCi/\ell$. 2. The correlation coefficients(r) of radon concentration and indoor meteorological conditions were as follows; 1) temperature : r=0.11 2) atmospheric pressure : r= -0.01 3) humidity : r=0.227.

  • PDF

Indoor Radon Concentrations in the Seoul Area (서울시 일부 지역에서의 실내 라돈 농도에 관한조사)

  • 김윤신
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 1989
  • Indoor radon concentrations, measured in 34 houses and various types of underground environments in the Seoul area during February 1988 - January 1989, varied from 0.9 - 9.9 pCi/l. Radon concentrations in basements of the selected homes were about 1.5 times higher than those levels measured in the first floor. The radon level of the first floor in the energy efficient homes are signficantly higher than the conventional homes. Indoor radon levels in the underground pass were higher than any other types of underground environments. Variations among underground environments were much less than for homes, probably because there was less variability in ventilation.

  • PDF

A Note on the Weak* Radon Nikodym Property

  • Yoon, Ju Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.3 no.1
    • /
    • pp.121-124
    • /
    • 1990
  • In this paper, we introduce the notion of the compact range property and $weak^*$ Radon Nikodym property. We prove that the compact range property, weak Radon Nikodym property and $weak^*$ Radon Nikodym property in dual Banach space are all equivalent. Other related results and discussed.

  • PDF

Assesment of Indoor Radon Gas Concentration Change of College (대학의 실내 라돈가스 농도의 변화 평가)

  • Park, Hoon-Hee;Jeong, Euihwan;Kim, Hak-Jae;Lee, Juyoung;Lyu, Kwang Yeul
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.127-134
    • /
    • 2017
  • The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

A Study on the Concentrations of Indoor Radon for Houses in Chungcheongbuk-do Province, Korea (충청북도 일부지역 내 주택 실내 라돈 농도)

  • Ji, Hyun-A;Yoo, Ju-Hee;Kim, Ga-Hyun;Won, Soo Ran;Kim, Seonhong;Lee, Jeongsub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.668-674
    • /
    • 2019
  • Objectives: Modern people spend most of their day indoors. As the health impact of radon becomes an issue, public interest also has been growing. The primary route of potential human exposure to radon is inhalation. Long-term exposure to high levels of radon increases the risk of developing lung cancer. Radon exposure is known to be the second-leading cause of lung cancer, following tobacco smoke. This study measures the indoor radon concentrations in detached houses in area A of Chungcheongbuk-do Province considering the construction year, cracks in the houses, the location of installed detectors, and seasonal effects. Methods: The survey was conducted from September 2017 to April 2018 on 1,872 private households located in selected areas in northern Chungcheongbuk-do Province to figure out the year of building construction and the location of detector installed and identify the factors which affect radon concentrations in the air within the building. Radon was measured using a manual alpha track detector (Raduet, Hungary) with a sampling period of longer than 90 days. Results: Indoor radon concentrations in winter within area A was surveyed to be 168.3±193.3 Bq/㎥. There was more than a 2.3 times difference between buildings built before 1979 and those built after 2010. The concentration reached 195.4±221.9 Bq/㎥ for buildings with fractures and 167.2±192.4 Bq/㎥ for buildings without fractures. It was found that detectors installed in household areas with windows exhibited a lower concentration than those installed in concealed spaces. Conclusion: High concentrations of indoor radon were shown when there was a crack in the house. Also, ventilation seems to significantly affect radon concentrations because when the location of the detector in the installed site was near windows compared to an enclosed area, radon concentration variation increased. Therefore, it is considered that radon concentration is lower in summer because natural ventilation occurs more often than in winter.

Evaluation of Effective Dose and Exposure Level of Radon in Process Handling NORM (인산석고 취급공정에서의 라돈농도 및 유효선량 수준 평가)

  • Chung, Eun Kyo;Jang, Jae Kil;Kim, Jong Kyu;Kim, Joon Beom;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To monitor the radon concentration level in plants that handle phosphorus rock and produce gypsum board and cement, and evaluate the effective dose considering the effect of radon exposure on the human body. Methods: Airborne radon concentrations were measured using alpha-track radon detectors (${\alpha}$-track, Rn-tech Co., Korea) and continuous monitors (Radon Sentinel 1030, Sun Nuclear Co., USA). Radon concentrations in the air were converted to radon doses using the following equation to evaluate the human effects due to radon. H (mSv/yr) = Radon gas concentration x Equilibrium factor x Occupancy factor x Dose conversion factor. The International Commission on Radiological Protection (ICRP) used $8nSv/(Bq{\cdot}hr/m^3)$ as the dose conversion factor in 2010, but raised it by a factor of four to $33nSv/(Bq{\cdot}hr/m^3)$ in 2017. Results: Radon concentrations and effective doses in fertilizer manufacturing process averaged $14.3(2.7)Bq/m^3$ ($2.0-551.3Bq/m^3$), 0.11-0.54 m㏜/yr depending on the advisory authority and recommendation year, respectively. Radon concentrations in the gypsum-board manufacturing process averaged $14.9Bq/m^3$ at material storage, $11.4Bq/m^3$ at burnability, $8.1Bq/m^3$ at mixing, $10.0Bq/m^3$ at forming, $8.9Bq/m^3$ at drying, $14.7Bq/m^3$ at cutting, and $10.5Bq/m^3$ at shipment. It was low because it did not use phosphate gypsum. Radon concentrations and effective doses in the cement manufacturing process were $23.2Bq/m^3$ in the stowage area, $20.2Bq/m^3$ in the hopper, $16.8Bq/m^3$ in the feeder and $11.9Bq/m^3$ in the cement mill, marking 0.12-0.63 m㏜/yr, respectively. Conclusions: Workers handling phosphorous gypsum directly or indirectly can be assessed as exposed to an annual average radon dose of 0.16 to 2.04 mSv or 0.010 to 0.102 WLM (Working Level Month).

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.