• Title/Summary/Keyword: Radionuclide image

Search Result 30, Processing Time 0.023 seconds

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image (양전자 방출 핵종(18F)의 감마에너지가 X선 CT영상에 미치는 영향)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Kim, Ki-Jin;Oh, Hye-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4418-4424
    • /
    • 2011
  • This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of 18F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide($^{18}F$) was injected, there were reference water ($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), and 10 mCi($-13.47{\pm}0.38$ HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water ($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), and 10 mCi($-8.20{\pm}0.60$). Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide($^{18}F$), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.

Comparison of functional Images obtained by radionuclide angiocardiography and gated blood pool scan (방사성핵종 심혈관조영술의 기능적영상화에 대한 고찰)

  • Bom, Hee-Seung;Kim, Ji-Yeul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.2
    • /
    • pp.186-191
    • /
    • 1991
  • Radionuclide cardiac studies lend themselves exceptionally well to functional imaging. This is especially true for gated blood pool scan (GBP). Making functional images is also possible in radionuclide angiocardiography (RNAC). In this study we tried to validate the functional images obtained from RNAC by comparing it with GBP. Twenty three patients (16 patients with coronary artery diseases, 5 with hypertensive heart diseases, and 2 with nonspecific chest pains) underwent simultaneous RNAC and GBP at the same position (LAO $45^{\circ}$). From both studies, global ejection fraction, regional ejection fraction, phase image, amplitude image, stroke image, paradox image, maximum ejection and maximum filling rates were obtained. Global ejection fraction are almost same in both studies. Regional ejection fractions of apex and inferior portion of left ventricle calculated from RNAC are well correlated with those of GBP. Phase and paradox image, maximum ejection and maximum filling rates were obtained. Global ejection fraction are almost same in both studies. Regional ejection fractions of apex and inferior portion of left ventricle calculated from RNAC are well correlated with those of GBP. Phase and paradox images of RNAC are very similar to those of GBP. However, amplitude and stroke images are different. Regional ejection fractions of the left ventricular base, maximum ejection and maximum filling rates obtained from RNAC are significantly different from those of GBP. In conclusion, albeit all of functional images of RNAC is not same as GBP, regional walt motions and global left ventricular function are expected to be successfully analyzed by phase and paradox image and ejection fraction.

  • PDF

Three-Phase Bone Scintigraphy in Reflex Sympathetic Dystrophy Syndrome of the Hand (반사성 교감신경계 기능장애 증후군(RSDS)의 손 3상 골스캔 소견)

  • Ahn, Myeong-Im;Park, Jeong-Mi;Park, Young-Ha;Kim, Sung-Hoon;Chung, Soo-Kyo;Shinn, Kyung-Sub;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.81-86
    • /
    • 1991
  • Reflex sympathetic dystrophy syndrome (RSDS), known also as Sudeck's atrophy, is an uncommon disorder recognized by its distinctive symptom complex consisting of pain and tenderness, vasomotor instability, swelling, and dystrophic skin changes and radiologic changes. The present study has been carried out to prospectively establish scintigraphic diagnostic criteria for RSDS using three-phase radionuclide bone scintigraphy (TPBS). In addition, the usefulness in the evaluation of treatment of RSDS was assessed. Patients included were 6 men and 7 women with the age ranging from 25 to 63 years (average 47 years). Diagnosis was based on typical clinical symptoms and signs as described above. Associated clinical conditions in these patients were cerebral infarction (4 patients), lung cancer (2 patients), trauma (1 patient), lymphoma (1 patient), and unknown cause (5 patients). All patients showed diffuse radionuclide accumulation in juxtaarticular region on the delayed static image and 11 patients showed diffusely increased activities also on scintiangiogram and blood-pool image. Fillow-up TPBS after corticosteroid therapy in 4 patients revealed near normal return of abnormal radionuclide accumulations in the affected hand. TPBS is an useful test for the diagnosis of as well as the evaluation of the therapeutic effects of RSDS.

  • PDF

Thyroid imaging in 53 cats with hyperthyroidism using technetium-99m as pertechnetate

  • Lee, Young-won
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.394-397
    • /
    • 1999
  • Thyroid imaging was performed in 53 hyperthyroid cats with technetium-99m as pertechnetate($^{99m}TcO_{4}$). Increased radionuclide accumulation was found in all cats. Thirty-four cats had bilateral enlargements of the thyroid glands and 14 cats had unilateral enlargements. Five cats had multi-focal accumulation of $^{99m}TcO_{4}$ in the ventral neck or mediastinum. Conclusively, nuclear thyroid image is useful method in diagnosis of feline hyperthyroidism.

  • PDF

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

Analysis in Measurements of Gastric Emptying Time (위 배출시간 측정의 분석방범에 대한 연구)

  • Lee, Choon-Ho;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.35-38
    • /
    • 1997
  • Scintigraphic measurement of gastric emptying time has been reported to be influenced by the variation in depth of radionuclide within the stomach. This study was designed to clarify whether a part of the variability in gastric emptying could be ascribed to a relationship between anterior image, the total anteroposterior Image and the tissue attenuation correction(geometric mean). A dual-head scintillation camera(ADAC, USA) was used to investigate effect of such changes. We were performed 16 normal subject gastric emptying studies with $^{99m}TC$ labelled scramble egg, milk and solid meal(610 Kcal, 300 g) The results are as follows; On anterior Image, $T_{1/2}$ emptying time was delayed by 5 min, 6.5%(range $3{\sim}18\;min,\;5{\sim}31.4%$) compared with the geometric mean. But there was no different gastric emptying time between the total anteroposterior image and geometric mean. Therefore, if will be useful to use the method of geometric mean or the total anteroposterior image to evaluate the gastric emptying time accurately.

  • PDF

Comparison of Radioactivity Measurement with Radionuclide Calibrators in Nuclear Medicine Centers (의료용 방사능측정기의 측정 정확도 평가)

  • Son, Hye-Kyung;Kim, Ji-Hye;Lim, Chun-Il;Yang, Hyun-Kyu;Park, Ki-Jung;Oh, Heon-Jin;Kim, Hyeog-Ju;Kim, Dong-Sup
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • To acquire good image quality and to minimize unnecessary radiation dose to patients, it is important to ensure that the radiopharmaceutical administered is accurately measured. Quality control of radionuclide calibrators should be performed to achieve these goals. The purpose of this study is to support the quality control of radionuclide calibrators in nuclear medicine centers and to investigate the level of measurement accuracy of the radionuclide calibrators. 58 radionuclide calibrators from 45 nuclear medicine centers, 74 radionuclide calibrators from 58 nuclear medicine centers, and 60 radionuclide calibrators from 45 nuclear medicine centers were tested with I-131, Tc-99m and I-123, respectively. The results showed that 81% of calibrators for I-131, 61% of calibrators for Tc-99m and 67% of calibrators for I-123 were within ${\pm}5%$. 17% of calibrators for I-131, 20% of calibrators for Tc-99m and 15% of calibrators for I-123 had a deviation in the range 5%< $|{\Delta}|{\leq}10%$. 2% of calibrators for I-131, 19% of calibrators for Tc-99m and 18% of calibrators for I-123 had a deviation of $|{\Delta}|$ >10%. Follow-up measurements were performed on the calibrators whose error exceeded the ${\pm}10%$ limit. As a result, some of the calibrator showed an improvement and their deviation decreased below the ${\pm}10%$ limit. The results have shown that such comparisons are necessary to improve the accuracy of the measurement and to identify malfunctioning radionuclide calibrators.

Multigrid Wavelet-Based Natural Pixel Method for Image Reconstruction in Emission Computed Tomography

  • Chang je park;Park, Jeong hwan;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.705-710
    • /
    • 1998
  • We describe a multigrid wavelet-based natural pixel (WNP) method for image reconstruction in emission computed tomography (ECT). The ECT is used to identify the tagged radioactive material's position in the body for detection of abnormal tissue such as tumor or cancer, as in SPECT and PET. With ECT methodology in parallel beam mode, we formulate a matrix-based reconstruction method for radionuclide sources in the human body. The resulting matrix for a practical problem is very large and nearly singular. To overcome this ill-conditioning, wavelet transform is considered in this study. Wavelets have inherent de-noising and multiscale resolution properties. Therefore, the multigrid wavelet-based natural pixel (WNP) method is very efficient to reconstruct image from projection data that is noisy and incomplete. We test this multigrid wavelet natural pixel (WNP) reconstruction method with the MCNP generated projection data for diagnosis of the simulated cancerous tumor.

  • PDF

Measurement of Finger Blood Flow in Raynaud's Phenomenon by Radionuclide Angiography (레이노드 현상에서 수지혈류 측정에 관한 연구)

  • Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Choi, Sung-Jae;Koh, Chang-Soon;Kim, Sang-Joon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.21 no.2
    • /
    • pp.183-190
    • /
    • 1987
  • In Raynaud's phenomenon, the authors measured finger blood flow after ice water exposure by analyzing the time activity curve of radionuclide angiography on both hands. The results were as follows: 1) The digital blood flow did not decrease after ice water exposure in normal subjects. 2) In the patients with Raynaud's phenomenon, there were two groups: the one had decreased digital blood flow after cold exposure, and the other had paradoxically increased digital blood flow after cold exposure. 3) There was no difference in the digital blood flow of hand in room temperature between the normal and the patients with reduced digital blood flow after cold exposure, but the digital blood flow of the hand in room temperature was markedly reduced in the patients with paradoxically increased flow after cold exposure. 4) In the static image the difference was not significant in comparision with the dynamic study, because it represents pooling of the blood in the vein rather than flow. 5) After the treatment with nifedipine, the digital blood flow increased. In conclusion, the radionuclide angiography was useful in measuring the digital blood flow in Raynaud's phenomenon, and further studies with various drugs is expected.

  • PDF