
lable at ScienceDirect

Nuclear Engineering and Technology 52 (2020) 2594e2600
Contents lists avai
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
Investigation of a blind-deconvolution framework after noise
reduction using a gamma camera in nuclear medicine imaging

Kyuseok Kim a, Min-Hee Lee b, *, Youngjin Lee c, **

a Department of Radiation Convergence Engineering, Yonsei University, 1, Yonseidae-gil, Wonju-si, Gangwon-do, Republic of Korea
b Department of Pediatrics, Wayne State University School of Medicine, 3901, Beaubien St. Detroit, MI, USA
c Department of Radiological Science, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon, Republic of Korea
a r t i c l e i n f o

Article history:
Received 12 December 2019
Received in revised form
20 April 2020
Accepted 28 April 2020
Available online 30 April 2020

Keywords:
Blind deconvolution
Noise reduction
Gamma camera
Nuclear medicine imaging
Quantitative evaluation of image
performance
* Corresponding author.
** Corresponding author.

E-mail addresses: min-hee.lee@wayne.edu (M.-
(Y. Lee).

https://doi.org/10.1016/j.net.2020.04.032
1738-5733/© 2020 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
a b s t r a c t

A gamma camera system using radionuclide has a functional imaging technique and is frequently used in
the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image
quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution
framework after a noise-reduction algorithm based on a non-local mean, which has been shown to
outperform conventional methodologies with regard to the gamma camera system. For this purpose, we
performed a simulation using the Monte Carlo method and conducted an experiment. The image per-
formance was evaluated by visual assessment and according to the intensity profile, and a quantitative
evaluation using a normalized noise-power spectrum was performed on the acquired image and the
blind-deconvolution image after noise reduction. The result indicates an improvement in image per-
formance for gamma camera images when our proposed algorithm is used.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

X-ray photons and gamma rays using radioisotopes are
routinely used in the field of diagnostic imaging worldwide. In
particular, nuclear-medicine imaging encompasses all medical
technologies that include radioactivity to diagnose disease. Among
the imaging systems, the gamma camera (referred to as the Anger
camera) with a scintillation detector, photomultiplier tubes, and a
collimator is one of the most widely used devices in the field of
nuclear medicine. It detects gamma rays emitted by radiophar-
maceuticals [1,2]. In particular, the most common current exami-
nations with the gamma camera for diagnosis are bone scans using
a phosphate compound with a99mTc label, brain perfusion scans,
and myocardial perfusion scans [3e5]; these procedures depends
on the patient's symptoms.

In gamma camera images, noise reduction is a major issue
because the camera accumulates low gamma-ray photon counts,
which are detected by a detector [6]. Numerous filters and
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denoising methods have been proposed to address the noise
problem in gamma camera images. Notice that conventional filter-
based [7e9] and iterative-based algorithms [10e12] have been
uniquely impacted by denoising methods. Conventional median or
average filters based on non-linear methods are generally used to
reduce image noise and can achieve excellent timing resolution.
Median and average filters focus on the zero mean with Gaussian
noise and are calculated as follows [13]:

yi ¼ xi þ Gi (1)

where yi is the patch of the observed image, xi is the original patch
with the pixel center, and Gi is the Gaussian white noise. However,
this method is a low-level image processing technique and has the
major problem of low edge-preservation in images. To cope with
this problem, iterative-based algorithms, such as total variation
(TV) and non-local means (NLM), have been developed. In partic-
ular, the NLM noise-reduction algorithm is a more practical image-
processing method, and its principle is based on the weighted
average value of the pixel and similarity measurement [12].
Numerous studies on the excellent performance (image quality and
processing time) of the NLM algorithm in medical photon-based
images have been conducted. As demonstrated by Lee et al. in
2019, the contrast-to-noise ratio (CNR) and the coefficient of
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Fig. 1. Image degradation process with blurring and noise reduction process using
kernel algorithm.
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variation (COV) obtained by the NLM noise reduction algorithm are
1.34 and 1.71 times better, respectively, than that of the conven-
tional median filter in high-energy X-ray images [14]. In addition,
the timing resolution of the NLM noise-reduction algorithm is 6.70
times faster than that of the TV-based algorithm in a chest X-ray
imagewith a 3D-printing nodule phantom, as studied by Shim et al.,
in 2019 [15].

However, all denoising methods including NLM inevitably result
in image degradationwith a blurring effect. To improve the blurring
amplification, many conventional deblurring methods, including
Bayesian, Wavelet transform, and TV approaches, have been used
because of their low computation requirement and simplicity for
processing [16]. In addition, the non-blind (unknown point spread
function) technique has the problem of data loss. Although many
methods have been proposed to improve deblurring problems in
the image-processing field, the efficiency and accuracy of the al-
gorithm fall short.

Thus, the purpose of this paper is to propose a highly efficient
blind-deconvolution framework after a noise-reduction algorithm
based on NLM with a gamma camera system. In this study, we
performed a simulation using the Monte Carlo method and a real
experiment with the gamma camera system. In addition, a visual
assessment, intensity profile, and normalized noise-power spec-
trum (NNPS) were used to assess the effectiveness of our proposed
algorithm.

2. Materials and methods

2.1. Proposed blind-deconvolution framework modelling

Fig. 1 shows an illustration of general image degradation with
blurring due to the imaging system and the noise-reduction pro-
cess. The degraded image, gðx;yÞ, is generated as follows:

gðx; yÞ¼uðx; yÞ 5 5 kernelsystemðx; yÞ þ nðx; yÞ (2)

where uðx; yÞ is the clean image; kernelsystemðx; yÞ is the degradation
rate in the imaging system, including the finite focal-spot size and
pixel size; nðx; yÞ is the additional noise, including the Poisson noise
and Gaussian noise; and 55 is the 2D convolution operator. Here,
Eq. (2) follows a linear shift invariant [17].

We used the Anscombe transform (AT) [18,19] and NLM algo-
rithm [20] for noise reduction. Generally, numerous noise-
reduction algorithms suffer from mixed-noise images, which are
composed of both Poisson and Gaussian noise. As a solution to this
problem, AT is calculated as follows:

fsðgÞ¼
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where a is a scaled parameter; andm and s2 are the mean and
standard deviation of the Gaussian noise, respectively. We assume
that the parameters are a ¼ 1, s ¼ 0, andm ¼ 0 in the pure Poisson
case in Eq. (4):
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When fsðgÞ is denoised, it is clear that Eff ðgÞjbf ;sg¼ y because
the Poisson noise is converted into an uncorrelated noise of the
radiation photons. Assuming that Eff ðgÞjbf ;sg¼ y is equal to Efgjbf ;
sg¼ y, bf is obtained to use the direct algebraic inverse, f�1ðyÞ¼ y2
4 �

3
8, of the inverse ATs. However, the result using the direct algebraic
inverse is biased because fsðgÞ is non-linear transform. To overcome
this difficulty, we use the closed-form approximation of the exact,
unbiased inverse transform [21]:
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where y is the resultant Gaussian denoising using fsðgÞ. Here, we
use the NLM algorithm to indicate noise reduction, and its algo-
rithm is computed as follows:

yðsÞ¼ 1
ZðsÞ

X
t2NðsÞ

wðs; tÞ½f ðgÞ�ðtÞ (6)

wðs; tÞ¼ exp
�
� pðs; tÞ

d2

�
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pðs; tÞ¼1
d
jjgðds � dtÞjj22 (8)

where ZðsÞ is the normalized constant of the similarity between the
two square patches between ds and dt at center pixels s and t, NðsÞ is
a large search window, and d is the proportional expected value of
the distance both ds and dt .

After successful noise reduction, we obtain a more blurred im-
age as follows:

yðx; yÞ¼ uðx; yÞ 55 ktotalðx; yÞ (9)

where ktotalðx; yÞ is a total blur kernel, which is dependent on the x-
ray imaging system and the noise algorithm. Eq. (9) depicts the ill-
posed problem in which uðx; yÞ and kerneltotalðx; yÞ are unknown.
Fig. 2 shows a simplified flowchart for the blind-deconvolution in
the blurred image, yðx; yÞ, to find uðx; yÞ. First, we find the initial
sharp image prediction using Eqs. (10)e(12):

u* ¼ argmin
u

jju55k� yjj22 þ ljjVujj0 (10)

rðtþ1Þ ¼ argmin
g

bðtÞu VuðtÞjj � rjj22 þ jjlrjj0 (11)

uðtþ1Þ ¼ argmin
u

jju55k� yjj22 þ bðtÞu jjVu� rðtþ1Þjj22 (12)

where Vu is substituted for r to calculate the half-quadratic split-
ting formulation [22] using the sub-problem of Eqs. (11) and (12)



Fig. 2. Schematic description of our proposed blind-deconvolution in blurred image.
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under the closed-form condition. b and l are weight parameters to
control the two terms; the regularization term used the l0-norm
gradient prior, which was introduced for natural image deconvo-
lution by Pan et al. [23]. Then, we estimate the total blur kernel
using the method of Anger et al. [24] as follows:

k*¼ argmin
kS0;suppðkÞ2U

jju 55k� yjj22 þ rjjk1jj þ gjjVkjj22 (13)

hðtþ1Þ ¼ argmin
u

jju 55h� yjj22 þ b
ðtÞ
k jjkðtÞ � hjj22 þ gjjVhjj22

(14)

kðtþ1Þ ¼ argmin
kS0;suppðkÞ2U

b
ðtÞ
k jjk� hðtþ1Þjj22 þ rjjk1jj (15)

where k is substituted for h to calculate the half-quadratic splitting
formulation using the sub-problem of Eqs. (14) and (15) and r and g

also are balancing parameters; and U is a rectangular domain. Eq.
(14) is effectively solved by two discrete Fourier transforms as
follows:
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where b
ð0Þ
k ¼ 1 and is multiplied by two at each iteration until the

fifth iteration, and Eq. (15) can be solved using the soft shrinkage-
thresholding method as follows:
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Detail information of the splitting and proximal point methods
for image deconvolution can be founded in references [25,26].

We acquire the updated deblurred image, miþ1, using the
updated blur kernel k*, and then check the mismatch between the
updated deblurred image miþ1, and the pre-updated deblurred
image mi, until the ε value of the difference error is reached. Finally,
the deblurred image, bu, is obtained by using the blind deconvolu-
tion process.

2.2. Simulation and experimental conditions

The Monte Carlo simulation tool using Geant4 Applications for
Tomographic Emission (GATE) version 6 was used in this study to
simulate the gamma camera system. We designed the 99mTc source
using 100,000-Bq activity with a hot-rod phantom. The phantom
imagewas acquiredwith a 900-s scan time and a cadmium-telluride
detector with a 44.8 � 44.8 mm2 area, using a parallel-hole colli-
mator. In this study, a statistical noise distribution was modeled on
the GATE simulation to obtain the applied image.

A gamma camera system (Discovery NM/CT 670, GE Healthcare)
consisting of a parallel-hole collimator was used in the experi-
mental study. In addition, we used a Jaszcazk phantomwith a99mTc
source, and the source-to-collimator distance was 21 cm.

2.3. Evaluation of image quality

The evaluation parameters of visual assessment, intensity pro-
file, and NNPS were used to evaluate the effectiveness of our pro-
posed blind-deconvolution framework after using the noise-
reduction algorithm based on NLM. The NNPS is calculated as fol-
lows [27]:

NNPSðu; vÞ¼ NPSðu; vÞ
ðmean signal Þ2

(18)



Fig. 3. (a) Result images, and (b) enlarged images using the box-A region with Monte Carlo simulation.

Fig. 4. Comparison result of the noise reduction image with TV algorithm (left) and that of NLM algorithm (right).
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Fig. 5. Calculated profiles of the Monte Carlo simulation image using the BC-line re-
gion in Fig. 3 (a).
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where u and v are the spatial frequency conjugates, Dx and Dy are
the pixel spacing, Nx and Ny are number of pixels in the X and Y
directions (e.g., Dx and Dy are both 3 mm and Nx and Ny are both 64
pixels, empirically), M is the number of ensemble averages, Iðxj; ylÞ
is the image intensity at the ðxj; ylÞ pixel location, and Sðx; yÞ is the
mean intensity. 2D NNPS is converted 1D data form using the radial
averaging method. Note that the smaller NNPS vales per spatial
frequency, the better noise characteristic in the measured data.
Fig. 7. (a) Measured profiles of the experimental image using the AB-line region in
Fig. 6 (a), and (b) differential profiles of the noise-reduced and proposed images.
3. Results and discussion

In gamma camera imaging, a non-linear filter including a median
filter is a major denoising method that uses an image-processing
technique. Although a non-linear filter with common window-
kernel size is easy to use, it has the drawbacks of relatively low
denoising efficiency and low preservation of edge information. To
address these problems, iterative-based algorithms including NLM
and a non-blind technique have been developed. However, these two
Fig. 6. Experimental result images usin
methods still have problems with blurring effects and data loss in
gamma camera imaging. Thus, we propose a highly efficient blind-
deconvolution framework based on both simulation and real ex-
periments of the NLM denoising process in a gamma camera system.
g the real gamma camera system.



Fig. 8. (a) Result images and (b) enlarged images using the box-C region with the real gamma camera system.
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Fig. 3 shows the Monte Carlo simulation results of a (a) simu-
lated image (left top), noise-reduced image (top right), predicted
blur image (bottom left), and proposed image (bottom right); and
the (b) enlarged images of the simulated image (left), noise-
reduced image (middle), and proposed image (right) in box A.
Fig. 4 shows the comparison result of the noise reduction image
using the TV algorithm (left) and the NLM algorithm (right). Its
result indicated that the NLM algorithm effectively performed the
noise reduction without additional artifact (i.e., cartoon artifact)
because it can be seen that the method of the smoothing by
assigning the weights to similar information in the surrounding the
local-area is a suitable method of theminimizing the artifacts. From
a qualitative analysis, we confirm that the proposed algorithm
accurately recovered the blur artifact from only the noise-reduced
Fig. 9. 1D NNPS plot result with respect spatial frequency.
image. To objectively compare the performance of the proposed
framework, Fig. 5 shows the measured profiles of the simulated,
noise-reduced, and proposed images in Fig. 3(a), line BC. The profile
of the proposed image is sharper than that of the noise-reduced
image indicated by the red arrows.

Fig. 6 shows the experiment results using the Jaszcazk phantom
(side view) of the measured image (left), noise-reduced image
(middle), and proposed image (right). Fig. 7 shows the profiles of (a)
the measured, noise-reduced, and proposed images in Fig. 6, line
AB; and (b) the differential profiles of the noise-reduced and pro-
posed images. Here, the full-width at half maximum of differential
profiles of the proposed image is approximately 11 pixels, which is
approximately 0.7 times smaller than that of the noise-reduced
image.

Fig. 8 shows the experiment images using the Jaszcazk phantom
(top view) of the (a) measured image (left), noise-reduced image
(middle), and proposed image (right); and (b) enlarged images of box
A. These results reflect that the proposed framework accurately
restored the blurring both experimentally and in the simulation
study. Fig. 9 shows the 1DNNPS plot of themeasured, noise-reduced,
and proposed images. The 1D NNPS of the noise-reduced and pro-
posed images are located below that of themeasured image, and only
slight differences were observed between the noise-reduced and
proposed images. Therefore, the proposed framework implemented
the blind-deconvolution without additional noise amplification.

4. Conclusion

We showed improved results with highly efficient blind-
deconvolution framework after the noise-reduction algorithm
based on NLM in the gamma camera image. In conclusion, our
results demonstrated that the proposed method can enhance
images with far more computationally demanding algorithms in
the gamma camera system.
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