양전자 방출 핵종(¹⁸F)의 감마에너지가 X선 CT영상에 미치는 영향

김가중^{1*}, 배석환², 김기진³, 오혜경⁴ ¹극동대학교 방사선학과, ²건양대학교 방사선학과, ³건양대학병원 핵의학과, ⁴대전보건대학 방사선과

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image

Gha-Jung Kim^{1*}, Seok-Hwan Bae², Ki-Jin Kim³ and Hye-kyong Oh⁴ ¹Department of Radiological Science, Far East University ²Department of Radiological Science, Konyang University ³Department of Nuclear Medicine, Konyang University Hospital ⁴Department of Radiological Technology, Daejeon Health Sciences College

요 약 양전자방출 방사성동위원소를 주입한 팬텀에서 방출되는 511keV 에너지의 감마선이 X-선 CT영상에 미치는 영향을 정량적으로 평가하고자 한다. 스캔방법은 증류수를 주입(0 mCi)한 기준영상과 양전자 방출핵종인 ¹⁸F(Fluorine) 의 용량을 1 mCi, 2 mCi, 5 mCi, 10 mCi로 변화시켜 획득된 영상의 CT 번호와 픽셀값을 측정하였다. 양전자 방출 핵종(¹⁸F)을 주입한 팬텀 영상의 CT 번호(HU) 측정 결과, 기준물(-7.58 ± 0.66 HU), 1 mCi(-9.85 ± 0.50 HU), 2 mCi(-10.27 ± 0.21 HU), 5 mCi(-11.31 ± 0.66 HU), 10 mCi(-13.47 ± 0.38 HU)로 물을 채운 기준 영상과 비교하여 10 mCi에서는 5.89 HU, 5 mCi에서는 3.73 HU, 2 mCi에서는 2.69 HU, 1 mCi에서는 2 HU가 감소하였다. 팬텀 영 상의 픽셀 값은 기준물(-2.70 ± 0.75), 1 mCi(-4.72 ± 0.58), 2 mCi(-6.01 ± 0.78), 5 mCi(-6.10 ± 0.84), 10 mCi(-8.20 ± 0.60)로 기준물영상과 비교한 픽셀 값의 변화는 10 mCi에서는 5.50, 5 mCi에서는 3.40, 2 mCi에서는 3.10, 1 mCi 에서는 2.02가 감소하는 것을 알 수 있었다. 본 실험을 통해 양전자 방출핵종(¹⁸F)의 용량(Dose) 증가에 따라 CT번호 와 영상의 픽셀 값은 비례적으로 감소하였으며 감소폭 또한 비슷한 값을 나타냈다. 이에 PET/CT의 정도관리 항목에 양전자 방출핵종으로 인한 X선 CT 영상의 변화 정도와 그에 따른 적합기준을 마련하고 주기적 관리가 이루어져야 할 것이다.

Abstract This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of ¹⁸F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide(18 F) was injected, there were reference water (-7.58 ± 0.66 HU), 1 mCi(-9.85 ± 0.50 HU), 2 mCi(-10.27 ± 0.21 HU), 5 mCi(-11.31 ± 0.66 HU), and 10 mCi(-13.47 ± 0.38 HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water (-2.70 ± 0.75) , 1 mCi (-4.72 ± 0.58) , 2 mCi (-6.01 ± 0.78) , 5 mCi (-6.10 ± 0.84) , and 10 mCi (-8.20 ± 0.60) . Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide(¹⁸F), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.

Key Words : Positron Emission Radionuclide, PET/CT, CT Number(Hounsfield Units)

*교신저자 : 김가중(gjms1225@hanmail.net)

접수일 11년 08월 12일 수정일 (1차 11년 08월 22일, 2차 11년 08월 29일) 게재확정일 11년 10월 06일

1. 서론

최근 경제 수준의 향상과 고령화가 진행되면서 암의 발생은 계속 증가하고 있으며 2008년 암발생률은 10만명 당 178.8명으로 해마다 점진적으로 증가하는 경향을 보 이고 있다[1]. 암의 발생률과 더불어 효율적이고 보다 정 확한 진단과 치료를 위한 의료기술의 개발 역시 중요성 이 더해가고 있다. 2000년대부터 급격히 보급되고 있는 ¹⁸F-FDG (Fluorodeoyglucosse)를 이용한 PET(Positron E mission Tomography)은 종양의 조기 진단과 병기 설정에 유용한 정보를 제공하며, 수술과 항암치료 및 방사선 치 료의 평가와 치료 후 전이 유무를 판단하는데 중요한 역 할을 하고 있다[2-4].

PET은 ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁶²Cu, ⁶⁸Ga, ⁸²Rb등 양전자를 방출하는 방사성동위원소에 물, 산소, 포도당, 아미노산 등의 생리학적 물질이나 유사 화합물을 표지하여 환자에 투여하고 혈류 및 대사 등 생체의 생리학적•생화학적 기 능을 영상으로 나타낸다. 양전자 방출 방사선핵종에서는 직접 감마선이 방출되지 않고 양전자가 매우 짧은 거리 (수 mm)를 조직 내에서 이동하여 운동에너지를 상실하 고 정지된 주변의 음전하를 띤 전자와 결합하여 511keV 의 소멸 방사선(Annihilation Radiation)인 두 개의 감마선 이 180°방향으로 발생한다. 이를 동시계수회로를 사용하 여 거의 같은 시간에 도달된 감마선만을 검출하여 영상 을 구성하며 소멸방사선으로 영상을 얻기 때문에 영상 이 우수하고 다른 핵의학 검사보다 단층상의 화질도 우 수하다. 또한 해부학적 변화를 나타내는 CT(Computed Tomography)나 MRI(Magnetic Resonance Imaging)보다 생리·화학적인 신진대사의 변화를 정확하게 나타낼 수 있다. 이러한 양전자 방출핵종들은 대부분 짧은 반감기를 가지고 있어 비교적 높은 방사선량을 투여할 수 있고, 고 화질의 정보를 얻을 수 있으며 하루에 재검사를 시행할 수 있는 장점이 있다[5, 6].

이러한 PET의 장점으로 종양학분야 뿐만 아니라 뇌대 사와 기능 평가, 심·혈관계 질환등 임상에서 그 유용성 이 매우 커지고 있다. 그러나 최근의 CT나 MRI장치의 높은 공간분해능과 해상력이 우수한 영상에 비교하면 핵 의학영상의 질이 떨어지므로 임상에서 핵의학 영상으로 만 해부학적 정보가 부족하여 이를 개선하기 위해 공간 분해능이 우수한 CT(또는 MRI)와 대조도 분해능이 우수 한 PET를 하나로 융합(Fusion)한 PET/CT가 개발되어 해 부학적 영상과 기능적 영상을 결합하여 정확한 병변의 위치를 제공하고 진단 성능을 향상시키고 있다[7].

기존의 단일 PET에서는 ⁶⁸Ge 또는 ¹³⁷Cs과 같은 동위 원소를 이용하여 감쇠지도용 투과 영상을 획득하였으나 PET/CT 시스템에서는 X-선 CT 영상을 감쇠 보정을 위 한 지도로 사용함으로써 검사 소요시간을 현저하게 줄여 호흡 및 환자의 움직임의 영향을 감소시켰다. 또한 CT 데이터의 정보량이 동위원소를 이용한 투과 스캔보다 많 기 때문에 잡음 제거 측면에서도 향상된 화질의 PET영상 을 얻을 수 있어 임상적 유용성이 매우 높아졌다. PET/CT에서 감쇠 보정은 CT 에너지(30 ~ 140 keV)에서 의 감쇠 계수를 PET 에너지(511keV)의 감쇠 계수로 변 환해주는 과정으로 분할(Segmentation method), 선형관계 모델(Scaling, bilinear model, hybrid method), 이중에너지

방사선 영상법(Dual Energy X-ray imaging method)등이 있다[8-10]. 이때 감쇠 계수(μ, attenuation coefficient)란 광자가 물질을 투과하면서 단위 길이의 매질과 광전효과 (Photoelectric effect) 혹은 컴프턴 산란(Compton scattering effect)등의 반응을 일으킬 확률을 표시한 것으로 저 에 너지 영역에서는 광전효과, 고 에너지 영역일수록 컴프 턴 산란이 지배적이다[11].

$$I(t) = I_0 \exp(-\int_0^t \mu dt') \quad$$
(1)

여기서, I₀는 입사범의 강도, μ는 선감쇠계수(Linear attenuation coefficient, Cm⁻¹), t는 피사체의 두께를 나 타낸다. 이러한 감쇠계수는 물을 0으로 하여 공기는 -1000, 뼈와 같이 감약 값이 큰 물질을 +1000으로 나 타내어 물질의 흡수 선량치를 각 픽셀이 갖는 CT번호 (Hounsfield Units)로 표시한다.

CT번호는 환자를 투과한 X-선의 강도를 수학적으로 계산한 수치이며 PET/CT에서의 감쇠 보정을 이용하고 있 으나, 양전자 방출 핵종에서 방출되는 511keV의 감마선 이 CT 검출기에 도달하여 CT번호와 픽셀 값에 변화를 초 래할 것으로 사료된다. 이에 본 연구에서는 양전자방출 방사성동위원소를 주입한 팬텀에서 방출되는 511keV 에 너지의 감마선이 X-선 CT영상에 미치는 영향을 정량적으 로 측정하고 임상응용에 그 적절성을 평가하고자 하였다.

2. 재료 및 방법

2.1 팬텀의 제작 및 양전자 방출핵종(¹⁸F)을 주입한 팬텀의 컴퓨터 단층 영상 획득

양전자방출 핵종이 CT영상에 미치는 영향을 정량적으 로 평가하기위해 팬텀을 자체 제작하였다. PET/CT 검사 시 목적장기에 방사성의약품이 집중적으로 집적한 상태 를 가정하기 위하여 팬덤의 중앙에는 방사성 동위원소를 주입한 주사용기(Syringe)를 설치할 수 있도록 설계하였 다. 팬텀 재질은 폴리에틸렌으로 25 Cm × 25 Cm × 25 Cm의 정육면체로 제작하였으며, 팬텀의 바닥에는 나사 를 이용하여 CT 촬영 시 레이저를 이용한 수평 레벨을 교정할 수 있도록 고안하였다.

자체 제작 팬텀은 CT(MX-8000, Philips, USA)의 hole 중심에 위치 시켜 120kVp의 관전압, 250mAs의 노출 조 건으로 2 mm 절편 두께로 횡단면의 영상을 획득하였다.

스캔방법은 팬텀에 물을 채운 후 주사용기에 물을 주 입(0 mCi)한 기준영상과 양전자 방출핵종인 ¹⁸F(511keV) 을 증류수에 희석하여 1 mCi, 2 mCi, 5 mCi, 10 mCi 용량 으로 변화시켜 총 5회 영상을 획득하였다[Fig 1].

[그림 1] 자체 제작 팬텀의 모형과 X선 CT를 이용한 팬텀 스캔

[Fig. 1] Schematic of self-produced Phantomand Phantom scan using the X-ray CT.

2.2 양전자 방출핵종(18F)을 주입한 팬텀 영 상의 CT 번호를 측정

각각의 획득된 영상은 보건복지부에서 권고하는 "특 수 의료장비의 설치 및 운영에 관한 규칙"중 CT 성능평 가 항목에 준하여 window width를 300 ~ 400 HU, window level을 0 ~ +100 HU사이에서 팬텀의 횡단면상 에서 주사용기의 중심으로부터 1580 ~ 1620 mm² 면적의 원형 ROI(Region Of Interest)를 설정하여 평균 CT 번호 (Hounsfield Unit : HU) 값을 측정하였다. 또한 동일한 방 법으로 각기 다른 5개 슬라이스에서 평균 CT 번호 값을 측정하였다.

CT 번호는 물에 대한 감약 계수와 조직의 감약 계수 를 확대한 값으로 식(2)에 의해 구할 수 있다.

$$CTNmber = K \frac{(\mu_T - \mu_W)}{\mu_W} \quad \dots \dots \tag{2}$$

여기서 µT는 조직의 감약계수, µw는 물의 선감약계수,

K는 확대정수이며, CT 번호는 물의 감약계수를 기준으로 하여 상대적으로 설정된 값이므로 Hounsfield unit에서 물의 CT 번호는 항상 0이며 뼈와 공기는 각각 +1,000과 -1,000이다[12, 13].

2.3 양전자 방출핵종(¹⁸F)을 주입한 팬텀 영상

양전자 방출핵종(¹⁸F)을 주입한 팬텀 영상을 주사용기 의 중심 슬라이스로부터 위, 아래 5개 영상을 동일한 ROI(100 mm²)을 설정하여 ImageJ 프로그램(Ver 1.44, Java image processing program)으로 픽셀 값을 측정하였 다. 픽셀 값의 범위는 -1000 ~ +1000으로 설정하였으며 16bit로 분석하였다[Fig 2].

[그림 2] 양전자 방출핵종을 주입한 팬텀 영상의 CT 번호 (A)와 평균 픽셀 값을 측정(B).

[Fig. 2] Measurement of the CT number of the phantom image where the positron emission radionuclide was injected(A) and the average pixel value(B).

3. 결과

양전자 방출핵종(¹⁸F)을 주입한 팬텀 영상의 CT 번호 (HU) 측정 결과, 기준물(0 mCi) 에서의 측정된 평균 범위 는 -6.54 ~ -8.33 HU이며, 1 mCi에서는 -8.95 ~ -10.26 HU, 2 mCi에서는 -9.99 ~ -10.54, 5 mCi에서는 -10.54 ~ -12.01, 10 mCi에서는 -12.89 ~ -13.87로 측정되었다. 총 평균 값은 기준물에서 -7.58 ± 0.66 HU, 1 mCi에서 -9.85 ± 0.50 HU, 2 mCi에서 -10.27 ± 0.21 HU, 5 mCi에서 -11.31 ± 0.66 HU, 10 mCi에서 -13.47 ± 0.38 HU로 나타 났다. 물을 채운 기준 팬텀 스캔 영상과 비교하여 10 mCi 에서는 5.89 HU, 5 mCi에서는 3.73 HU, 2 mCi에서는 2.69 HU, 1 mCi에서는 2 HU가 감소하는 것을 알 수 있 었다[Table 1].

양전자 방출핵종(¹⁸F)을 주입한 팬텀 영상의 평균 픽셀 값을 측정한 결과 기준물(0 mCi)은 -2.70 ± 0.75, 1 mCi

[표]	1]	측정된	평균	CT번호와	표준편차
-----	----	-----	----	-------	------

[Table	1]	The	average	CT	number	which	is	measured	and	Standard	deviation
--------	----	-----	---------	----	--------	-------	----	----------	-----	----------	-----------

Dose	fx	CT Number(HU)							
		mean	SD	min	max	Total average	SD		
		-7.88	16.34	-103	38				
		-7.70	16.22	-99	29				
Water (standard)	5	-8.33	15.78	-86	36	-7.58	0.66		
(standard)		-7.45	16.05	-89	35				
		-6.54	15.64	-92	34				
		-9.30	16.59	-99	38		0.50		
		-10.26	17.22	-103	27				
1 mCi	5	-9.85	16.97	-100	29	-9.58			
		-9.55	16.59	-98	31				
		-8.95	15.92	-94	33				
	5	-10.34	16.64	-102	36	-10.27	0.21		
		-10.14	16.35	-104	30				
2 mCi		-10.36	15.86	-106	32				
		-9.99	16.23	-103	36				
		-10.54	16.05	-101	34				
		-10.67	16.27	-101	42	-11.31	0.66		
	5	-10.54	16.28	-95	32				
5 mCi		-11.53	16.11	-108	36				
		-11.78	16.21	-106	30				
		-12.01	16.87	-105	32				
	5	-13.45	16.23	-107	26		0.38		
		-12.89	16.54	-105	36				
10 mCi		-13.38	16.07	-102	32	-13.47			
		-13.75	16.23	-104	29				
		-13.87	16.75	-108	34				

에서는 -4.72 ± 0.58, 2 mCi에서는 -6.01 ± 0.78, 5 mCi에 서는 -6.10 ± 0.84, 10 mCi에서는 -8.20 ± 0.60으로 측정 되었다. 기준물을 스캔한 영상과 비교하여 픽셀 값의 변 화는 10 mCi에서는 5.50, 5 mCi에서는 3.40, 2 mCi에서 는 3.10, 1 mCi에서는 2.02가 감소하는 것을 알 수 있었 다[Table 2].

양전자 방출핵종(¹⁸F)의 용량(Dose)의 증가에 따라 CT 번호와 영상의 픽셀 값은 비례적으로 감소하였으며 기준 물과 비교한 감소폭도 비슷한 값으로 감소하는 것을 알 수 있었다[Fig 3].

[[]그림 3] 양전자 방출핵종의 용량에 따른 CT번호와 픽셀 값의 변화량

[Fig. 3] The Variation of CT Number and Pixel Number according to the change in the capacity of Positron Emission Radionuclide

	fx	area(mm ²)	Pixel Number					
Dose			mean	min	max	Total average	SD	
			-2.31	-39	19			
337		100	-1.64	-34	40	-2.70	0.75	
water	5		-3.28	-28	28			
(standard)			-2.78	-41	26			
			-3.48	-40	18			
			-4.21	-34	38			
	5	100	-5.28	-39	26	-4.72	0.58	
1 mCi			-4.85	-40	32			
			-5.22	-37	36			
			-4.01	-33	37			
			-5.31	-39	19			
	5	100	-5.43	-32	25	-6.01	0.78	
2 mCi			-5.80	-38	30			
			-6.31	-39	19			
			-7.22	-38	32			
			-7.31	-39	19			
	5	100	-6.51	-49	24	-6.10	0.84	
5 mCi			-5.90	-28	24			
			-5.70	-37	32			
			-5.11	-39	31			
			-7.26	-49	22			
	5	100	-8.72	-32	18	-8.20	0.60	
10 mCi			-8.16	-47	25			
			-8.72	-32	38			
			-8.15	-47	39			

[표 2] ImageJ로 분석한 픽셀값 [Table 2] The Pixel Number value analyzed with Image J

4. 고찰 및 결론

방사성의약품을 이용한 핵의학검사는 질병에 대한 진 단, 치료 및 그 질환의 병태 생리적, 생화학적 변화를 제 공함으로써 보다 유용한 의료정보의 질을 향상시켜주고 있다. 최근 PET/CT는 PET의 생리적, 생화학적 정보와 CT의 높은 공간분해능과 해상력이 우수한 영상을 결합 하여 보다 정량적이며 우수한 진단영상을 획득하고 있다. PET-CT에 사용되는 양전자 방출핵종들은 511 keV의 에 너지의 소멸 감마선을 방출하며 신틸레이터(Scintillator) 로 검출하여 영상을 얻게 된다. 그러나 핵의학 체외검사 에 이용되는 양전자 방출핵종의 소멸 감마선(511keV)은 CT에 이용되는 X선과 같은 광자(Photon)의 성질을 가지 고 있어 인체를 투과한 강도(Intensity)로 영상을 구성하 는 각각의 검출기에 영향을 줄 수 있다. 양전자 방출 소 멸 감마선의 에너지는 진단 목적의 X선 에너지 (30~140keV)의 수배에 이르기 때문에 CT 영상에 영향을 줄 것 이다. 보건복지부에서는 "특수의료장비 설치 및 운

영에 관한 규칙"에서 AAPM CT성능평가용 팬텀 사용 시 X선 CT 영상의 품질관리 검사의 적합기준은 물의 CT 감 약계수는 0 ± 7 HU이내, 노이즈 6 HU이내, 균일도 5 HU 이내로 규정하고 있다[14]. 물론 본 연구의 팬텀의 경우 방사성의약품을 주입할 수 있도록 자체 제작되어 동일하 게 적용하기는 어려우나 상대적비교 평가 기준으로써 양 전자 방출핵종의 감마에너지가 CT 번호나 픽셀 값의 감소 를 초래하여 영상의 강도를 변화시킴을 확인 할 수 있었 다. 이러한 강도의 변화는 PET/CT에서 영상의 감쇠보정의 정확성을 저하시키는 요인으로 작용할 수 있을 것이다.

최근 방사선 치료영역에서는 CT-Simulation 장치가 보 편화 되고 있으며 정확한 종양의 용적 결정과 불균질 조 직의 보정을 위해 PET-CT 영상을 이용하여 치료계획을 실시하고 있다. 불균질 조직에 대한 보정은 CT 번호를 이용하고 있으나 이러한 양전자 방출핵종의 감마선이 방 사선치료계획 영상의 CT 번호 감소로 부정확한 보정은 물론 선량분포의 변화를 가져와 치료결과에 영향을 줄 수 있을 것이다[15, 16].

양전자 방출 핵종을 주입한 팬텀영상에서 CT번호나

픽셀 값의 변화는 크지 않았지만 정량적 분석을 요구하 는 검사에서는 방사성핵종의 방사붕괴시간을 충분히 고 려하여 시행하고 방사선치료영역에는 PET/CT 영상을 직 접 치료계획의 불균질 조직의 보정에 이용함에 있어 신 중해야 할 것이다.

본 연구의 결과에서 PET/CT 검사에 많이 이용되는 ¹⁸F-FDG의 용량변화에 따라 진단 X선 CT영상의 CT 번 호와 픽셀 값의 변화에 대하여 정량적으로 평가를 하였 다. 평가 결과 CT 번호와 픽셀 값은 용량의 증가와 비례 하여 감소하였으며, 그 변화는 크지 않았으나 영상의 왜 곡을 초래할 수 있는 여지는 충분하다고 여겨진다.

이에 PET/CT의 정도관리 항목에 양전자 방출핵종으 로 인한 X선 CT 영상의 변화 정도와 그에 따른 적합기준 을 마련하고 주기적 평가가 이루어져야 할 것이다.

References

- Ministry of Health and Welfare, 2008 Annual Report of the Korea Central Cancer Registry, 2008
- [2] Kinahan PE, Alessio AM, Fessler JA., "Dualenergy CT attenuation correction methods forquantitative assessment of response to cancer therapy with PET/CT imaging", Technol Cancer Res Treat, 5, pp. 319–27, 2006.
- [3] Stahl A, Wieder H, Piert M, Wester HJ, et al.," Positron emission tomography as a tool for translational research in oncology", Molecular Imaging in Biology, 6, pp. 214-224, 2004.
- [4] Juweid ME, Cheson BD., "Positron-emission tomography and assessment of cancer therapy", N Engl J Med, 354, pp. 496-507, 2006.
- [5] Kapoor V, McCook BM, Torok FS., "An introduction to PET-CT imaging", Radiographics, 24, pp. 523-543, 2004.
- [6] Turkington TG., "Introduction to PET instrumentation", J Nucl Med Technol, 29, pp. 1-8, 2001.
- [7] Wahl RL, Quint LE, Cieslak RD, et al., "Anatometabolic tumor imaging: fusion of FDGPET with CT or MRI to localize foci of increased activity", J Nucl Med, 34, pp. 1190–1197, 1993.
- [8] Nehmeh SA. et al., "Correction for Oral Contrast Artifacts in CTAttenuation-corrected PET Images Obtained by Combined PET/CT", Journal of Nuclear Medicine, 44, pp. 1940-1944, 2003.
- [9] LaCroix KJ, Tsui BM, Hasegawa BH, Brown JK., "Investigation of the Use of X-ray CT Images for Attenuation Compensation in SPECT", IEEE Transactions on Nuclear Science, 41, pp. 2793-2799, 1994.

- [10] Fessler JA, Elbakri IA, Sukovic P, Clinthorne NH., "Maximum likelihood Dual-energy Tomographic Image Reconstruction", Medical Imaging 2002: Image Processing, 4684, pp. 38-49, 2002.
- [11] Kinahan PE, Hasegawa BH, Beyer T., "X-ray based attenuation correction for positron emission tomography /computed tomography scanners", Semin Nu cl Med, 33, pp. 166–179, 2003.
- [12] McCullough EC, Holmes TW., "Acceptance testing computerized radiation therapy treatment planning systems: direct utilization of CT data", Med Phys, 12, pp. 237-42, 1985.
- [13] Schneider U, Pedroni E, Lomax A., "The calibration of CT Hounsfield units for radiotherapy treatment planning", Phys Med Biol, 41, pp. 111-124, 1994.
- [14] Minister of Health and Welfare Ordinance No, 65. Special medical equipment, installation and operation of the rules. 2011.(Revision)
- [15] Mutic S, Palta JR, Butker EK, et al., "Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No 66", Med Phys. 30, pp. 762–792, 2003.
- [16] Mutic S, Dempsey JF, Bosch WR, et al., "M ultimodality image registration quality assurance for conformal three-dimensional treatment planning", Int J Radiat Oncol Biol Phys, 51, pp. 255–260, 2001

김 가 중(Gha-Jung Kim)

• 2006년 8월 : 고려대학교 의학물

[정회원]

- 2006년 8월 : 고려대학교 의학물 리학과 (이학석사)
- 2010년 8월 : 전북대학교 방사선 과학기술학과(이학박사)
- 2000년 2월 ~ 2010 2월 : 건양 대학교병원 방사선종양학과
- 2010년 3월 ~ 현재 : 극동대학
 교 방사선학과 교수

<관심분야> 방사선 물리, 방사선종양학

배 석 환(Seok-Hwan Bae) [정회원]

- 2000년 9월 ~ 2008년 8월 : 건 양대학교병원 영상의학팀장
 2004년 3월 ~ 2006년 2월 : 건
- 양대학교 보건복지대학원 보건 학석사
- 2007년 2월 ~ 2009년 8월 : 건
 양대학교 일반대학원 보건학박
 사
- 2008년 8월 ~ 현재 : 건양대학교병원 자문교수
- 2009년 3월 ~ 현재 : 건양대학교방사선학과 교수

<관심분야> 보건학, 방사선과학, 보건의료장비

김 기 진(Ki-Jin Kim)

[정회원]

- 2009년 2월 : 전북대학교 방사선 과학기술학과 (이학석사)
- 2011년 3월 : 전북대학교 방사선 과학기술학과(박사과정)
- 2000년 2월 ~ 현재 : 건양대학 교병원 핵의학과

<관심분야> 방사선물리

오 혜 경(Hye-kyong Oh)

[정회원]

- 2009년 5월 ~ 2010 4월 : 보건 과학연구소 보조연구원
- 2011년 2월 : 고려대학교 보건과 학과 방사선학 전공(보건학석사)
 2011년 3월 ~ 현재 : 대전보건
 - 대학 방사선과 교수

<관심분야> 방사선 물리, 방사선 계측, 원자력 공학, 방사선 방호