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Abstract

We describe a multigrid wavelet-based natural pixel (WNP) method for image
reconstruction in emission computed tomography (ECT). The ECT is used to identify the
tagged radioactive material’s position in the body for detection of abnormal tissue such as
tumor or cancer, as in SPECT and PET. With ECT methodology in parallel beam mode,
we formulate a matrix-based reconstruction method for radionuclide sources in the human
body. The resulting matrix for a practical problem is very large and nearly singular. To
overcome this ill-conditioning, wavelet transform is considered in this study. Wavelets have
inherent de-noising and multiscale resolution properties. Therefore, the multigrid
wavelet-based natural pixel (WNP) method is very efficient to reconstruct image from
projection data that is noisy and incomplete. We test this multigrid wavelet natural pixel
(WNP) reconstruction method with the MCNP generated projection data for diagnosis of

the simulated cancerous tumor.

I. Introduction

Internally administered radionuclides are used medically for imaging studies of various
body organs and for non-imaging studies such as thyroid uptake and blood volume
measurements. But we can make only indirect measurements by probing the object, e.g.,
with invisible radiation from radioactive sources. So an image reconstruction procedure is
needed to process the projection data to form an image and so to facilitate the
interpretation of the measurements.

We may divide computed tomography into two categories: transmission computed
tomography (TCT) and emission computed tomogrphy (ECT). The fundamental physical
difference between TCT and ECT is that both the source and the attenuating medium are
unknown in ECT, whereas only the attenuating medium is unknown in TCT. The second
important difference is that of available statistics. An ECT device collects approximately
10,000 times less data per transverse section image than TCT.! But the expected errors in
much of the ECT work are 10% or greater. This is one of the reasons that the
reconstruction strategy for ECT involves investigation of algorithms of the iterative class.
Fig. 1 shows the configurations of ECT and TCT.

In this paper, we describe a multigrid and wavelet-based natural pixel (WNP)
reconstruction technique for the ECT problem2 with incomplete noisy projection data, that
has been successfully used in the TCT problem.3 The natural pixel (NP) representation
results in a matrix-based reconstruction method which has the advantage that the resulting
reconstructions are devoid of many of the incomplete data artifacts present in the
tomographic reconstruction. But a disadvantage of the NP reconstruction is that it requires
solutions of a very large, generally ill-conditioned system of equations. Since the projection
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data (i.e, measurements) are usually noise-contaminated, this ill-conditioning is very
troublesome for the numerical stability of the solutions. To overcome this ill-conditioning
problem, wavelet transform and regularized wavelet multigrid are used in the reconstruction
procedure. ‘ :

Because of the space and frequency localization of wavelets which results from the
multiresolution analysis, wavelets are very useful in many different fields of science and
engineen'ng.4 This particular kind of dual localization achieved by wavelets renders the
matrix representation of large classes of functions and operators sparse, or sparse to some
high accuracy, when they are transformed into the wavelet domain. The sparse
transformation matrix equation can then be easily solved by singular value decomposition
(SVD). Singular value decomposition (SVD) is the method of choice for solving most of the
linear least squares problems. In addition, the wavelet transform gives a desirable property
of de-noising for noisy imaging problems, again due to the multiresolution analysis. The
use of wavelet bases enables us to formulate a multiscale tomographic reconstruction
method wherein the object is reconstructed at multiple scales or resolutions. The overall
reconstruction is obtained by combining the reconstructions at different scales. This is the
basic idea of wavelet multigrid method. '

Among several wavelet bases, we have chosen the orthonormal compactly supported
wavelets that were constructed by Daubechies.* For de-noising of the projection data a hard
thresholding scheme is used. We apply our multigrid WNP reconstruction method to the
projection data generated by MCNP?

II. Preliminaries of Wavelet Theory

Wavelets are very useful in many different fields of science and engineering, e.g., sound
analysis and reconstruction, decomposition of visual data, PDE solver,6 and detection of
edges and singularities.7 Here, we use wavelets for image reconstruction from incomplete
and noisy projection data. Fundamentals of wavelet theory are provided in the following
for completeness.

The wavelet functions are generated by dilation and translation operations such as

¢ i(0)=2"2§2"x— B), e))
for some ¢=L*(R).
A multiresolution analysis (MRA) of L®*( R)is defined as a set of closed subspaces V;
with j € Z that exhibit the following broperties :
DV; C Vi,
2) )eV; e v2x) €Vyy and vix) eVy e vx+) eV,
+oo ’ . 400 . .
3) U V;isdensein L R)and () V;={0},
j=—oc0 j=—o0
4) A scaling function ¢(x)e ¥V exists such that the set { $(x— dl/e Z } is a basis of
Vo.
Consequently, a sequence (k) € 2(Z) exists such that the scaling function satisfies a
two-scale dzﬁ'erence equation

¢(x) = th¢(2xf k). @
The set of functions {¢;,(%)|/eZ} with ¢, (x)=2"2¢(2’x— 1) is an orthonormal
basis of V; . A complementary space of V; in Vj; is denoted by W), so that V., = VO W,
and consequently,
+00
B w=r(w. )

The complementary spaces are chosen such that
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wx)eW o w2x)eW,,, and w(x)eW, © wix+1) W,. 4)

A function ¢{(x) is a mother wavelet if the set of functions { (x— 0|/ Z} is an
orthonormal basis of Wy Since the mother wavelet is also an element of V;, a sequence

(gx) € #(Z) exists such that
$(x) = 2gip(2x— k). 5)
The set of functions { ¢; ,(x) | le Z} with ¢; (x)=2"2¢(2’x— 1) is an orthonormal basis
of W; . The coefficients h; and g, are related, for Daubechies’ wavelet of order N, by
g=(=D hoy-1. ©)

Now, suppose that a finite sequence s%, k=1,2,--,K, is given. The fast wavelet
transform (FWT)* can be written as:

: 2&—1 i
Sk = 20 huSwine-1 s

o N
;RS
d, = = EnSnrak-1,
and the inverse fast wavelet transform can be written as:
1 . .
Som = gthk—1S]n—k+x+ gngk—-ld]n—k+1,
®

i=1 j i
Son—1= gthk—Zs n—k+1 T g:lgye—zdn—kﬂ,

where N is the Daubechies’ order. A wavelet transform of a 2-dimensional matrix is most
easily obtained by performing 1-dimensional wavelet transform on the column vectors, then
on the row vectors.

III. ECT Image Reconstruction

Emission computed tomography (ECT) can be used to determine the location of abnormal
tissues or the moment-to-moment changes in chemistry and flow physiology by injected or
inhaled compounds labeled with radioactive atoms. The field of ECT is generally considered
a subject of nuclear medicine wherein until recently only projection images of the organ
distribution of injected isotopes were used to estimate normal and abnormal tissues.

Suppose that we do not know where the radiation source is, nor how much attenuation
exists between the source and the body edge. But we can only use the projection data of
the original source, and from the projection data we want to reconstruct the original source
distribution in the medium by indirect analysis. So ECT method is introduced, which needs
to rotate the imaging device to get projection data at various angles.

For a parallel-beam imaging geometry, the projection data consists of parallel and
non-overlapping strip integrals through the object that contains the radiation source at
various angles.

The integral equation for projection data is as follows:

D= [ [ Ru,0) Tiku, ) Aulee, Vdudv, — k=1,Ny; I=1,,N,,  ©

where
f(u,v) : object that contains radiation source to be reconstructed,
(1) : observation corresponding to projection !/ at angular position k,
T (2, v) : indicator function of the strip integral corresponding to observation,
Ay (u,v) : attenuation function of the medium to the detector.

In our study, we consider operator T as track length in the pixel which the projection line
goes through. Attenuation function A can be written as follows:
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Alu, v)=exp(—plu, ) (u,v:k, 1)), 10)
where
#(u, v) : uniform attenuation factor in the position (z, v) ,
{u,v:k, 1) : distance between the detector and the position (%, v) .
If we discretize Eq. (9), then the overall observation equation becomes

y=[y 3] yN1=Taf, )

where

f: N? vector representating Au,v) on an Ny X N, square pixel lattice,

y: Ny N; vector containing the projection data,

Ta:NgN,XN? matrix representing the complete set of discretized attenuated indicator
functions

(Taw(u,v)=TyAy; k=1, ,Ng; (=1, ,N}.
The tomographic reconstruction problem is then to find an estimate 7 of the discretized

object f given the projection data contained in y . The natural pixel (NP) method is a
class of matrix-based reconstruction method, which is expressed in implicit form as

y = (ToTH)x = Cx, 12)
where f = T}; x.

In this NP method, incomplete data is allowed and the matrix C is calculated for each
specific acquisition geometry. But it is usually difficult to solve for x, because the size of
matrix C is large with NgN X NyN, and it requires a tremendous amount of storage. It
also usually results in an ill-conditioned problem.

IV. Multigrid Wavelet-Based Natural Pixel Reconstruction

It will be helpful if we transform the matrix C in Eq. (12) so that it may be inverted in
a computationally efficient manner. So, we will use the wavelet transform. First, the
noise-contaminated measurement data y is de-noised by wavelet transform.

The wavelet transform of the strip attenuated basis function is as follows:

T = WTA
(13)
=[v7 37~ 7%)
where W is matrix representation of 1-D wavelet transform.
We define the vectors:
' p= Wy, &= Wx. 14
From Egs. (12) and (14),
. 7= TIE§E, 15)
where the multiscale system matrix I" is given by:
= WCW' = W(T,THOW = 337, (16)
Using the regularized least squares (RLS), the solution of Eq. (15) is given by
‘ (r'r+in¢ = 7y, an

where A is a regularization parameter.

The size of the matrices in Eq. (17) is very large. So we would not solve it directly
because of the memory problem in the computer. So we use wavelet multigrid method.
Wavelet decomposition of a signal (or a vector) leads to a multiresolution representation of
the signal (or the vector). If we exploit the multiresolution property, the computational time
may be reduced. In this paper, we use V-cycle wavelet multgrid algorithrn. The principle of
this algorithm 1is illustrated in Fig. 2. Instead of the downward (from fine to coarse)
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restriction in the classical V-cycle multigrid, where the error is calculated and restricted,
here we use wavelet decomposition to reach the coarsest grid of the V-cycle. At the vertex
of the V-cycle, SVD is used to find & (that is «x). In the case of the upward
reconstruction (from coarse to fine), we use wavelet reconstruction instead of error
prolongation (error compensation). In the wavelet multigrid method, the low frequency
component is used assuming the other components are zero. In clinical applications, usually
only certain regions with abnormal features are of interest. This wavelet multigrid algorithm
allows to zoom-in to the special regions of interest (ROI’s).

V. Application and Conclusions

We apply the multigrid WNP reconstruction method to the ECT problem for simulated
cancer detection in human body. Projection data are generated with the MCNP code.” From
the projection data (uncollided flux in MCNP), we reconstruct cancerous tumors distribution,
which are assumed of circular shape and located somewhere in the body. The results are
shown in Fig. 3.

From the MCNP simulation, we find that the reconstruction of cancerous tumor with
noiseless complete data (the size of matrix 74 is 1024X1024) is sufficiently accurate. Even
in the case of incomplete projection data (the size of matrix Ta is 768 X1024) with some
noises, the multigrid WNP (wavelet-based natural pixel) reconstruction method gives
accurate tumor image. We also find that the wavelet de-noising property is very effective
in recovering the original image.
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Fig. 1. Configuration of computed tomography
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Fig. 2. Configuration of wavelet multigrid V-cycle
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Fig. 3. Results of MCNP simulation (pixel size: 32X 32)
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