• Title/Summary/Keyword: Radiology science department

Search Result 2,933, Processing Time 0.029 seconds

Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System

  • So Jeong Lee;Ji Eun Park;Seo Young Park;Young-Hoon Kim;Chang Ki Hong;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.772-783
    • /
    • 2023
  • Objective: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. Materials and Methods: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-codeleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. Results: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). Conclusion: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.

Variability of Transrectal Shear Wave Elastography in a Phantom Model (팬텀연구에서 경직장 전단파탄성초음파의 가변성)

  • Jihyun Lee;Seong Kuk Yoon;Jin Han Cho;Hee Jin Kwon;Dong Won Kim;Jun Woo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1110-1122
    • /
    • 2023
  • Purpose This study aimed to assess the variability of transrectal shear wave elastography (SWE) using a designed phantom. Materials and Methods In a phantom, the SWE values were examined by two radiologists using agarose and emulsion silicone of different sizes (1, 2, and 3 cm) and shapes (round, cubic) at three depths (1, 2, and 3 cm), two region of interest (ROI) and locations (central, peripheral) using two ultrasound machines (A, B from different vendors). Variability was evaluated using the coefficient of variation (CV). Results The CVs decreased with increasing phantom size. Significant changes in SWE values included; agarose phantom at 3 cm depth (p < 0.001; machine A), 1 cm depth (p = 0.01; machine B), emulsion silicone at 2 cm depth (p = 0.047, p = 0.020; both machines). The CVs increased with increasing depth. Significant changes in SWE values included; 1 cm agarose (p = 0.037, p = 0.021; both machines) and 2 cm agarose phantom (p = 0.047; machine A). Significant differences in SWE values were observed between the shapes for emulsion silicone phantom (p = 0.032; machines A) and between ROI locations on machine B (p ≤ 0.001). The SWE values differed significantly between the two machines (p < 0.05). The intra-/inter-operator agreements were excellent (intraclass correlation coefficient > 0.9). Conclusion The phantom size, depth, and different machines affected the variability of transrectal SWE.

Radiology of Magnetic Resonance Spectroscopy (진단방사선에서의 자기공명분광)

  • Park, Bo-Young
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.33-42
    • /
    • 1992
  • The fundamental principles of MRS, one of the most powerful analytical tools in seience, is introduced as the promising methodology in the diagnostic radiology of medical science. A variety of applications of MRS indicates the possibility of more accurate and sensitive diagnosis in medicine. The combination of anatomical informations by MRI and biochemical informations by MRS provides the bright prospect in the diagnostic radiology.

  • PDF

Study on Improvement of Signal to Noise Ratio for HgI2 Radiation Conversion Sensor Using Blocking Layer (Blocking layer 적용을 통한 HgI2 방사선 변환센서의 신호대 잡음비 향상에 관한 연구)

  • Park, Ji-Koon;Yoon, In-Chan;Choi, Su-Rim;Yoon, Ju-Sun;Lee, Young-Kyu;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using double layer technique tio decrease dark current. High efficiency material in substitution for a-Se have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using Hetero junction already used as solar cell, semiconductor. Particle-In-Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in PIB method. To make up for the weak points, double layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity is measured to evaluate double layer radiation sensor material.

Effects of various cone-beam computed tomography settings on the detection of recurrent caries under restorations in extracted primary teeth

  • Kamburoglu, Kivanc;Sonmez, Gul;Berktas, Zeynep Serap;Kurt, Hakan;Ozen, Dogukan
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.109-115
    • /
    • 2017
  • Purpose: The aim of this study was to assess the ex vivo diagnostic ability of 9 different cone-beam computed tomography (CBCT) settings in the detection of recurrent caries under amalgam restorations in primary teeth. Materials and Methods: Fifty-two primary teeth were used. Twenty-six teeth had dentine caries and 26 teeth did not have dentine caries. Black class II cavities were prepared and restored with amalgam. In the 26 carious teeth, recurrent caries were left under restorations. The other 26 intact teeth that did not have caries served as controls. Teeth were imaged using a $100{\times}90-mm$ field of view and a 0.2-mm voxel size with 9 different CBCT settings. Four observers assessed the images using a 5-point scale. Kappa values were calculated to assess observer agreement. CBCT settings were compared with the gold standard using a receiver operating characteristic analysis. The area under the curve (AUC) values for each setting were compared using the chi-square test, with a significance level of ${\alpha}=.05$. Results: Intraobserver kappa values ranged from 0.366 to 0.664 for observer 1, from 0.311 to 0.447 for observer 2, from 0.597 to 1.000 for observer 3, and from 0.869 to 1 for observer 4. Furthermore, interobserver kappa values among the observers ranged from 0.133 to 0.814 for the first reading and from 0.197 to 0.805 for the second reading. The highest AUC values were found for setting 5 (0.5916) and setting 3 (0.5886), and were not found to be statistically significant(P>.05). Conclusion: Variations in tube voltage and tube current did not affect the detection of recurrent caries under amalgam restorations in primary teeth.

Evaluation of linear measurements of implant sites based on head orientation during acquisition: An ex vivo study using cone-beam computed tomography

  • Sabban, Hanadi;Mahdian, Mina;Dhingra, Ajay;Lurie, Alan G.;Tadinada, Aditya
    • Imaging Science in Dentistry
    • /
    • v.45 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Purpose: This study evaluated the effect of various head orientations during cone-beam computed tomography (CBCT) image acquisition on linear measurements of potential implant sites. Materials and Methods: Six dry human skulls with a total of 28 implant sites were evaluated for seven different head orientations. The scans were acquired using a Hitachi CB-MercuRay CBCT machine. The scanned volumes were reconstructed. Horizontal and vertical measurements were made and were compared to measurements made after simulating the head position to corrected head angulations. Data was analyzed using a two-way ANOVA test. Results: Statistical analysis revealed a significant interaction between the mean errors in vertical measurements with a marked difference observed at the extension head position (P<0.05). Statistical analysis failed to yield any significant interaction between the mean errors in horizontal measurements at various head positions. Conclusion: Head orientation could significantly affect the vertical measurements in CBCT scans. The main head position influencing the measurements is extension.

Effect of field-of-view size on gray values derived from cone-beam computed tomography compared with the Hounsfield unit values from multidetector computed tomography scans

  • Shokri, Abbas;Ramezani, Leila;Bidgoli, Mohsen;Akbarzadeh, Mahdi;Ghazikhanlu-Sani, Karim;Fallahi-Sichani, Hamed
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2018
  • Purpose: This study aimed to evaluate the effect of field-of-view (FOV) size on the gray values derived from cone-beam computed tomography (CBCT) compared with the Hounsfield unit values from multidetector computed tomography (MDCT) scans as the gold standard. Materials and Methods: A radiographic phantom was designed with 4 acrylic cylinders. One cylinder was filled with distilled water, and the other 3 were filled with 3 types of bone substitute: namely, Nanobone, Cenobone, and Cerabone. The phantom was scanned with 2 CBCT systems using 2 different FOV sizes, and 1 MDCT system was used as the gold standard. The mean gray values(MGVs) of each cylinder were calculated in each imaging protocol. Results: In both CBCT systems, significant differences were noted in the MGVs of all materials between the 2 FOV sizes(P<.05) except for Cerabone in the Cranex3D system. Significant differences were found in the MGVs of each material compared with the others in both FOV sizes for each CBCT system. No significant difference was seen between the Cranex3D CBCT system and the MDCT system in the MGVs of bone substitutes on images obtained with a small FOV. Conclusion: The size of the FOV significantly changed the MGVs of all bone substitutes, except for Cerabone in the Cranex3D system. Both CBCT systems had the ability to distinguish the 3 types of bone substitutes based on a comparison of their MGVs. The Cranex3D CBCT system used with a small FOV had a significant correlation with MDCT results.

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

Characteristics of radiographic images acquired with CdTe, CCD and CMOS detectors in skull radiography

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Lopes, Sergio Lucio Pereira de Castro;Haiter-Neto, Francisco;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.339-346
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the image quality, diagnostic efficacy, and radiation dose associated with the use of a cadmium telluride (CdTe) detector, compared to charge-coupled device (CCD) and complementary metal oxide semiconductor(CMOS) detectors. Materials and Methods: Lateral cephalographs of a phantom (type 1) composed of synthetic polymer filled with water and another phantom (type 2) composed of human skull macerated with polymer coating were obtained with CdTe, CCD, and CMOS detectors. Dosimeters placed on the type 2 phantom were used to measure radiation. Noise levels from each image were also measured. McNamara cephalometric analysis was conducted, the dentoskeletal configurations were assessed, and a subjective evaluation of image quality was conducted. Parametric data were compared via 1-way analysis of variance with the Tukey post-hoc test, with a significance level of 5%. Subjective image quality and dentoskeletal configuration were described qualitatively. Results: A statistically significant difference was found among the images obtained with the 3 detectors(P<0.05), with the lowest noise level observed among the images obtained with the CdTe detector and a higher subjective preference demonstrated for those images. For the cephalometric analyses, no significant difference (P>0.05) was observed, and perfect agreement was seen with regard to the classifications obtained from the images acquired using the 3 detectors. The radiation dose associated with the CMOS detector was higher than the doses associated with the CCD (P<0.05) and CdTe detectors(P<0.05). Conclusion: Considering the evaluated parameters, the CdTe detector is recommended for use in clinical practice.

Clinical comparison of intraoral CMOS and PSP detectors in terms of time efficiency, patient comfort, and subjective image quality

  • Kamburoglu, Kivanc;Samunahmetoglu, Ercin;Eratam, Nejlan;Sonmez, Gul;Karahan, Sevilay
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.93-101
    • /
    • 2022
  • Purpose: This study compared the effectiveness of complementary metal-oxide semiconductors (CMOS) and photostimulable phosphor (PSP) plates as intraoral imaging systems in terms of time efficacy, patient comfort, and subjective image quality assessment in real clinical settings. Materials and Methods: Fifty-eight patients (25 women and 33 men) were included. Patients were referred for a full-mouth radiological examination including 1 bitewing radiograph (left and right) and 8 periapical radiographs for each side (left maxilla/mandible and right maxilla/mandible). For each patient, 1 side of the dental arch was radiographed using a CMOS detector, whereas the other side was radiographed using a PSP detector, ensuring an equal number of left and right arches imaged by each detector. Clinical application time, comfort/pain, and subjective image quality were assessed for each detector. Continuous variables were summarized as mean±standard deviation. Differences between detectors were evaluated using repeated-measures analysis of variance. P<0.05 was accepted as significant. Results: The mean total time required for all imaging procedures with the CMOS detector was significantly lower than the mean total time required for imaging procedures with PSP (P<0.05). The overall mean patient comfort scores for the CMOS and PSP detectors were 4.57 and 4.48, respectively, without a statistically significant difference (P>0.05). The performance of both observers in subjectively assessing structures was significantly higher when using CMOS images than when using PSP images for all regions (P<0.05). Conclusion: The CMOS detector was found to be superior to the PSP detector in terms of clinical time efficacy and subjective image quality.