DOI QR코드

DOI QR Code

Variability of Transrectal Shear Wave Elastography in a Phantom Model

팬텀연구에서 경직장 전단파탄성초음파의 가변성

  • Jihyun Lee (Department of Radiology, Dongnam Institute of Radiological and Medical Science) ;
  • Seong Kuk Yoon (Department of Radiology, Dong-A University College of Medicine, Dong-A University Hospital) ;
  • Jin Han Cho (Department of Radiology, Dong-A University College of Medicine, Dong-A University Hospital) ;
  • Hee Jin Kwon (Department of Radiology, Dong-A University College of Medicine, Dong-A University Hospital) ;
  • Dong Won Kim (Department of Radiology, Isam Hospital) ;
  • Jun Woo Lee (Department of Radiology, Pusan National University Yangsan Hospital)
  • 이지현 (동남권원자력의학원 영상의학과) ;
  • 윤성국 (동아대학교 의과대학 동아대학교병원 영상의학과) ;
  • 조진한 (동아대학교 의과대학 동아대학교병원 영상의학과) ;
  • 권희진 (동아대학교 의과대학 동아대학교병원 영상의학과) ;
  • 김동원 (이샘병원 영상의학과) ;
  • 이준우 (양산부산대학교병원 영상의학과)
  • Received : 2023.05.03
  • Accepted : 2023.06.30
  • Published : 2023.09.01

Abstract

Purpose This study aimed to assess the variability of transrectal shear wave elastography (SWE) using a designed phantom. Materials and Methods In a phantom, the SWE values were examined by two radiologists using agarose and emulsion silicone of different sizes (1, 2, and 3 cm) and shapes (round, cubic) at three depths (1, 2, and 3 cm), two region of interest (ROI) and locations (central, peripheral) using two ultrasound machines (A, B from different vendors). Variability was evaluated using the coefficient of variation (CV). Results The CVs decreased with increasing phantom size. Significant changes in SWE values included; agarose phantom at 3 cm depth (p < 0.001; machine A), 1 cm depth (p = 0.01; machine B), emulsion silicone at 2 cm depth (p = 0.047, p = 0.020; both machines). The CVs increased with increasing depth. Significant changes in SWE values included; 1 cm agarose (p = 0.037, p = 0.021; both machines) and 2 cm agarose phantom (p = 0.047; machine A). Significant differences in SWE values were observed between the shapes for emulsion silicone phantom (p = 0.032; machines A) and between ROI locations on machine B (p ≤ 0.001). The SWE values differed significantly between the two machines (p < 0.05). The intra-/inter-operator agreements were excellent (intraclass correlation coefficient > 0.9). Conclusion The phantom size, depth, and different machines affected the variability of transrectal SWE.

목적 본 연구는 제작한 팬텀을 사용해 경직장 전단파탄성초음파의 가변성을 알아보았다. 대상과 방법 아가로즈와 실리콘에멀전을 각각 1, 2, 3 cm 크기의 둥근 모양과 사각 모양의 팬텀 물질로 제작하였다. 1, 2, 3 cm의 깊이에 팬텀을 놓고, 크기, 깊이, 모양에 따른 굳기값(coefficient variant)의 차이를 중심부/주변부에서 확인하였다. 두 명의 영상의가 경직장 초음파 탐촉자를 이용해 각각 3회씩, 두 개의 초음파기계로(기계 A, B), 굳기값을 확인하였다. 가변성은 변동계수로 표현하였다. 결과 팬텀의 크기가 커질수록 변동계수는 감소하였다. 크기에 따른 굳기값은, 아가로즈 팬텀은 기계 A 3 cm 깊이(p < 0.001), 기계 B 1 cm 깊이에서(p = 0.010), 실리콘에멀전 팬텀은 2 cm 깊이에서 두 기계 모두 유의한 차이를 보였다(p = 0.047, p = 0.020). 깊이가 깊어질수록 변동계수는 증가하였다. 깊이에 따른 굳기값은, 1 cm 크기 아가로즈 팬텀은 두 기계 모두(p = 0.037, p = 0.021), 2 cm 크기 아가로즈 팬텀은 기계 A에(p = 0.047) 유의한 차이를 보였다. 기계 A 실리콘에멀전에서만 모양에 따른 굳기값의 유의한 차이를 보였고(p = 0.032) 기계 B는 두 물질 모두 관심영역에 따른 굳기값의 유의한 차이가 보였다. 굳기값은 두 기계 간 유의한 차이가 있었고(p < 0.05), 시술자 내/시술자 간 일치도는 높았다(급내상관계수 > 0.9). 결론 팬텀의 크기, 깊이, 사용된 기계가 전단파탄성초음파 가변성에 영향을 주는 요소로 나타났다.

Keywords

References

  1. American Cancer Society. Prostate cancer. Atlanta, GA: American Cancer Society. Available at. https://www.cancer.org/cancer/prostate-cancer.html. Published 2021. Accessed July 11, 2022
  2. Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 2006;175:1605-1612
  3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815-822
  4. Pepe P, Fraggetta F, Galia A, Grasso G, Aragona F. Prostate cancer detection by TURP after repeated negative saturation biopsy in patients with persistent suspicion of cancer: a case-control study on 75 consecutive patients. Prostate Cancer Prostatic Dis 2010;13:83-86
  5. Girouin N, Mege-Lechevallier F, Tonina Senes A, Bissery A, Rabilloud M, Marechal JM, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol 2007;17:1498-1509
  6. Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 2009;30:327-334
  7. Beerlage HP, Aarnink RG, Ruijter ET, Witjes JA, Wijkstra H, Van De Kaa CA, et al. Correlation of transrectal ultrasound, computer analysis of transrectal ultrasound and histopathology of radical prostatectomy specimen. Prostate Cancer Prostatic Dis 2001;4:56-62
  8. Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant'agnese PA, Joseph JV, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark 2008;4:213-225
  9. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51:396-409
  10. Ahmad S, Cao R, Varghese T, Bidaut L, Nabi G. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 2013;27:3280-3287
  11. Woo S, Kim SY, Cho JY, Kim SH. Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol 2014;15:346-355
  12. Boehm K, Budaus L, Tennstedt P, Beyer B, Schiffmann J, Larcher A, et al. Prediction of significant prostate cancer at prostate biopsy and per core detection rate of targeted and systematic biopsies using real-time shear wave elastography. Urol Int 2015;95:189-196
  13. Chiu T, Xiong Z, Parsons D, Folkert MR, Medin PM, Hrycushko B. Low-cost 3D print-based phantom fabrication to facilitate interstitial prostate brachytherapy training program. Brachytherapy 2020;19:800-811
  14. Lee DH, Lee JY, Bae JS, Yi NJ, Lee KW, Suh KS, et al. Shear-wave dispersion slope from US shear-wave elastography: detection of allograft damage after liver transplantation. Radiology 2019;293:327-333
  15. Computerized Imaging Reference Systems. Multi-purpose, multi-tissue ultrasound phantom: model 040GSE. Norfolk, VA: Computerized Imaging Reference Systems. Available at. https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/multi-purpose-multi-tisse-ultrasound-phantom. Published 2013. Accessed June 13, 2022
  16. D'Souza WD, Madsen EL, Unal O, Vigen KK, Frank GR, Thomadsen BR. Tissue mimicking materials for a multiimaging modality prostate phantom. Med Phys 2001;28:688-700
  17. King RL, Liu Y, Maruvada S, Herman BA, Wear KA, Harris GR. Development and characterization of a tissuemimicking material for high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2011;58:1397-1405
  18. Barr RG, Memo R, Schaub CR. Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 2012;28:13-20
  19. Cao R, Huang Z, Varghese T, Nabi G. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study. Med Phys 2013;40:022903
  20. Palmeri M, Nightingale K, Fielding S, Rouze N, Deng Y, Lynch T, et al. RSNA QIBA ultrasound shear wave speed phase II phantom study in viscoelastic media. Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS); 2015 Oct 21-24; Taipei, Taiwan: IEEE; 2015; p.1-4
  21. Alrashed AI, Alfuraih AM. Reproducibility of shear wave elastography among operators, machines, and probes in an elasticity phantom. Ultrasonography 2020;40:158-166
  22. Hwang J, Yoon HM, Jung AY, Lee JS, Cho YA. Comparison of 2-dimensional shear wave elastographic measurements using ElastQ imaging and SuperSonic shear imaging: phantom study and clinical pilot study. J Ultrasound Med 2020;39:311-321
  23. Shin HJ, Kim MJ, Kim HY, Roh YH, Lee MJ. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol 2016;26:3361-3367
  24. Hwang JA, Jeong WK, Song KD, Kang KA, Lim HK. 2-D shear wave elastography for focal lesions in liver phantoms: effects of background stiffness, depth and size of focal lesions on stiffness measurement. Ultrasound Med Biol 2019;45:3261-3268
  25. Fukuhara T, Matsuda E, Fujiwara K, Tanimura C, Izawa S, Kataoka H, et al. Phantom experiment and clinical utility of quantitative shear wave elastography for differentiating thyroid nodules. Endocr J 2014;61:615-621
  26. Seliger G, Chaoui K, Kunze C, Dridi Y, Jenderka KV, Wienke A, et al. Intra- and inter-observer variation and accuracy using different shear wave elastography methods to assess circumscribed objects - a phantom study. Med Ultrason 2017;19:357-365
  27. Korta Martiartu N, Nambiar S, Nascimento Kirchner I, Paverd C, Cester D, Frauenfelder T, et al. Sources of variability in shear wave speed and dispersion quantification with ultrasound elastography: a phantom study. Ultrasound Med Biol 2021;47:3529-3542
  28. Lee SM, Chang W, Kang HJ, Ahn SJ, Lee JH, Lee JM. Comparison of four different shear wave elastography platforms according to abdominal wall thickness in liver fibrosis evaluation: a phantom study. Med Ultrason 2019;21:22-29
  29. Mun HS, Choi SH, Kook SH, Choi Y, Jeong WK, Kim Y. Validation of intra- and interobserver reproducibility of shearwave elastography: phantom study. Ultrasonics 2013;53:1039-1043