• Title/Summary/Keyword: Radiological dose

Search Result 1,441, Processing Time 0.026 seconds

Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가)

  • Lee, Dong-yeon;Kang, Yeong-rok
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

Reference Dosimetry and Calibration of Glass Dosimeters for Cs-137 Gamma-rays (연구용 세슘-137 조사기에 대한 흡수선량 측정과 유리선량계 교정에 관한 연구)

  • Moon, Young Min;Rhee, Dong Joo;Kim, Jung Ki;Kang, Yeong-Rok;Lee, Man Woo;Lim, Heuijin;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.140-144
    • /
    • 2013
  • In this research, the glass dosimeter was calibrated to measure the standard absorbed dose of the Cs-137 irradiator and absorbed dose in a biological sample. Absorbed dose in water for Cs-137 gamma ray was determined by the IAEA TRS-277 protocol. The PTW-TM30013 ion chamber and the PTW-TM41023 water phantom were utilized for measuring absorbed dose and the value was compared with the reading from DoseAce GD-302M glass dosimeter from Asahi Techno Glass Corporation for its calibration. The uncertainty of measurement ($1{\sigma}$) of the calibrated glass dosimeter was 2.7% and this result would be applied to improve the accuracy in measurement of absorbed dose in a biological sample.

A Study on Distortion and Dose of Images in Mobile Radiography (이동형 방사선검사에서 영상의 왜곡과 선량에 관한 연구)

  • Song, Hyeon-Seok;Lim, Cheong-Hwan;Jung, Hong-Ryang;Kim, Jong-Seong;Kim, Yeong-Ran;Jeong, Sung-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.305-312
    • /
    • 2022
  • The proportion and testing of portable radiation tests, which are limited at the request of the doctor, are gradually increasing only for patients in emergency situations and difficulties in moving. However, as there are many limiting factors compared to fixed devices, this study intends to measure and analyze the distortion of images according to the angle of the detector and the change in dose according to the position of the subject. For distortion experiments using a mobile radiation generator used in Hospital A, the SID was tilted by 110 cm, 14"×17" wireless FPD detector to 0°, -5°, -10°, -15°, -20°, and -35° to measure the change in area. The dose according to the location of the detector was analyzed on average by measuring the central dose at 110 cm of the SID and measuring the dose of 9 locations three times each. The analysis result of distortion by location according to the angle of the detector showed a statistically significant difference (f=58.74, p<0.000). Therefore, it can be seen that the angle of the detector and the tube is closely related to the distortion of the image. The difference in dose by location of the detector increased with respect to the center - pole, and decreased with the + pole. Tests using mobile radiation generators will require careful efforts by clinicians to position patients in the center of the detector for accurate diagnosis, and efforts will be made to level the angle between the mobile radiation generators and the detector.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Organ Dose Assessment of Nuclear Medicine Practitioners Using L-Block Shielding Device for Handling Diagnostic Radioisotopes (진단용 방사성동위원소 취급 시 L-block 차폐기구 사용에 따른 핵의학 종사자의 장기 선량평가)

  • Kang, Se-Sik;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • In the case of nuclear medicine practitioners in medical institutions, a wide range of exposure dose to individual workers can be found, depending on the type of source, the amount of radioactivity, and the use of shielding devices in handling radioactive isotopes. In this regard, this study evaluated the organ dose on practitioners as well as the dose reduction effect of the L-block shielding device in handling the diagnostic radiation source through the simulation based on the Monte Carlo method. As a result, the distribution of organ dose was found to be higher as the position of the radiation source was closer to the handling position of a practitioner, and the effective dose distribution was different according to the ICRP tissue weight. Furthermore, the dose reduction effect according to the L-block thickness tended to decrease, which showed the exponential distribution, as the shielding thickness increased. The dose reduction effect according to each radiation source showed a low shielding effect in proportion to the emitted gamma ray energy level.

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

A Survey on Patient Dose and Exposure Conditions in Simple Radiography of the Abdomen (복부 단순 X-선 촬영조건과 환자 피폭에 관한 조사 연구)

  • Kim, Sung-Soo;Lee, Sun-Sook;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 1996
  • We studied exposure techniques and exposure dose for simple abdomen A-P projection for 41 medical facilities that are located in Seoul area. 1. The range of tube voltage used was 60 to 84 kVp, the average tube voltage used was 74 kVp 2. Only 17% of added filter was used. 3. Tube current mostly used was 200 mA, some of them used 400 mA. 4. The grid ratio mostly was used 10 : 1, 54 % of the rare earth screen was used in most facilities. 5. The average skin entrance dose was 4.15 mSv and the dose range was 1.05 mSv to 11.0 mSv.

  • PDF

Radiological Dose Assessment Due to the Operation of Nuclear Facilities at KAERI Nuclear Site

  • Han, M.H.;Kim, E.H.;Hwang, W.T;Yeom, J.M.;Han, J.T.;Lee, Y.B.;Han, W.J.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.247-254
    • /
    • 2003
  • To prevent the potential health detriment to the public from radioactive effluents, radiological dose assessments due to the operation of nuclear facilities located at Korea Atomic Energy Research Institute (KAERI) site has been performed semiannually in compliance with the Minister of Science and Technology (MOST)'s Notice in Korea. Radiological dose assessment based on the new recommendation of the International Committee on Radiation Protection (ICRP-60) has been conducted since 1998. In this manuscript, a serial activities at KAERI site to meet the regulatory standards for routine releases of radioactive effluents are introduced and discussed including technical approaches. It is clear that each nuclear facility has been operated in compliance with regulatory standards. Furthermore, it is identified that the radiation induced health effects for residents around the site are neglectable.

Development of Image Reconstruction Algorithm for Chest Digital Tomosynthesis System (CDT) and Evaluation of Dose and Image Quality (흉부 디지털 단층영상합성 시스템의 영상 재구성 알고리즘 개발 및 선량과 화질 평가)

  • Kim, Min Kyoung;Kwak, Hyeng Ju;Kim, Jong Hun;Choe, Won-Ho;Ha, Yun Kyung;Lee, So Jung;Kim, Dae Ho;Lee, Yong-Gu;Lee, Youngjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.143-147
    • /
    • 2016
  • Recently, digital tomosynthesis system (DTS) has been developed to reduce overlap using conventional X-ray and to overcome high patient dose problem using computed tomography (CT). The purpose of this study was to develop image reconstruction algorithm and to evaluate image characteristics and dose with chest digital tomosynthesis (CDT) system. Image reconstruction was used for filtered back-projection (FBP) methods and system geometry was constructed ${\pm}10^{\circ}$, ${\pm}15^{\circ}$, ${\pm}20^{\circ}$, and ${\pm}30^{\circ}$ angular range for acquiring phantom images. Image characteristics carried out root mean square error (RMSE) and signal difference-to-noise ratio (SDNR), and dose is evaluated effective dose with ${\pm}20^{\circ}$ angular range. According to the results, the phantom image with slice thickness filter has superb RMSE and SDNR, and effective dose was 0.166 mSv. In conclusion, we demonstrated usefulness of developed CDT image reconstruction algorithm and we constructed CDT basic output data with measuring effective dose.