• Title/Summary/Keyword: Radioactive pollutants

Search Result 19, Processing Time 0.02 seconds

Numerical study on the gaseous radioactive pollutant dispersion in urban area from the upstream wind: Impact of the urban morphology

  • Shuai Wang;Xiaolei Zheng;Jin Wang;Jianzhi Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2039-2049
    • /
    • 2024
  • The radioactive pollutant could migrate to the downstream urban area under the action of atmospheric dispersion due to the turbulent mixing under actual pollution accidents. A scenario in which radioactive contaminants from the upstream (for example, a nearshore nuclear power plant accident) migrates to the downstream urban blocks have been considered in this study. Numerical simulations using computational fluid dynamics (CFD) are then conducted to investigate the effects of the urban morphology (building packing density and layout) on the atmospheric dispersion of radioactive pollutants in this scenario. The building packing density and structure can significantly affect urban areas' mean flow pattern and the turbulent kinetic energy (TKE). The flow pattern and the TKE distribution influence the radioactive pollution dispersion. It is found that the radioactive pollution at the urban canyons is significantly affected by the vertical transport at the canyon. A comparison of the distributions of radioactive and traditional non-radioactive pollutants is also provided.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Managerial Priority Derivation for Pollutants in Drinking Water (식수품질 저해요인 중 관리 우선순위 도출에 관한 연구)

  • Oh, Hee-Kyun;Lee, Hee-Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • The main purpose of this study was to derive managerial priority for pollutants in drinking water using the Delphi technique and analytic hierarchy process (AHP) method. We collected fundamental existing items based on a literature review for water pollutants, and deduced a total of 36 sub-items from nine core sectors, as follows: organic matter; inorganic substances; pathogenic organisms; chemicals; heavy metals; radioactive substances; sediment deposits; heat; and oil, and then conducted the first round of an expert study to ensure that objective indicators properly evaluate major issues for management of for drinking water quality. In the following round, the necessity and importance assessments of adjusted items were implemented using a content validity ratio index. Finally, items modified by Delphi surveys were applied to AHP. We computed weighted values by pair-wise comparison of sub-items and each of five sectors modified by the second round. According to the results of AHP, the managerial priority for pollutants in drinking water was as follows; while heavy metal placed first in importance, pathogenic organisms came second, followed by inorganic substances, organic matter and chemical substances from the sector perspective.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

Characteristics of Radioactive Aerosol Particles in Nuclear Power Plant Containments (원자로건물 내부 방사성 에어로졸 입자의 특성)

  • Kim, Min Young;Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.137-154
    • /
    • 2014
  • Prediction of the behavior of radioactive aerosol particles in a containment is of importance for the assessment of the consequences of nuclear power plant severe accidents because most radioactive air pollutants are emitted as aerosol particles upon severe accident. The performance of engineering safety features (ESFs) is also influenced by the characteristics of the aerosol particles. In this article, the characteristics of aerosol particles in reactor containments reported by previous studies were reviewed. The results of the experiments for postulated accidents in test reactors, for aerosol behavior analysis using artificial test aerosols, and for ESF performance evaluation were summarized. The summary of this article will be of use in designing and performance-evaluating ESFs.

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository (지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰)

  • Kim, Young-Min;Kwon, O-Sang;Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.65-78
    • /
    • 2007
  • The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

  • PDF

Current Status of Radon Management in the 5678 Seoul Metropolitan Rapid Transit Subway (5678 서울도시철도 지하역사의 라돈 관리 현황)

  • Kim, Jun-Hyun;Yoon, Hun-Sik;Seo, Kang-Jin;Woo, Hee-Yeong;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1306-1312
    • /
    • 2011
  • Underground Subway station's air pollutants are introduced from the indoor or outdoor. And Radon is a major pollutant in the subway station. Radioactive substances Radon is occuring naturally in granite tunnel wall and underground water. Especially inert gas Radon that causes lung cancer in human is anywhere but 5678 S.M.R.T. tunnels deep and pass through the granite plaque have a lot of Radon. The Radon concentration is determined by the following reasons : radon content of soil and concrete, underground water, ventilation, pressure difference, building structure, temperature, etc. So Radon concentration is hard to predict. And we can't only ventilate owing to era of high oil prices. This study focuses on our efforts for the reduction of Radon concentration. And the purpose is to provide basically datas of specially managed 15 subway station's Radon concentration.

  • PDF

Reduction Methods of Indoor hiy Quality on the Subway Station using by Ventilation (환기를 이용한 지하 역 실내 공기질 개선 방안)

  • 박덕신;정병철;조준호;정우성
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.139-146
    • /
    • 2001
  • Modern people stay at indoor places about 90% of a day. Radon-222 is a gas produced radioactive decay of the element radium. And, radon is one of the major indoor air pollutants moves into the underground space through various routes and is considered to cause lung c hurting the lung tissues, In this study, we measured the subway radon level at 9 stations o According to test results, we can figure out the concentration of radon by lines, times, and m points. So, it was found that ventilation conditions are the most important factors in the su quality. Finally, we suggested effective and economic management methods of air pollution subway.

  • PDF

Influence of Ventilation on the Subway Radon Level (환기에 의한 지하 역의 라돈농도 변화)

  • 박덕신;정우성;정병철
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.62-67
    • /
    • 2000
  • Modern people stay at indoor places about 90% of a day. Radon-222 is a gas produced by the radioactive decay of the element radium. And, radon is one of the major indoor air pollutants. Radon moves into the underground space through various routes and is considered to cause lung cancer by hurting the lung tissues. In this study, we measured the subway radon level at 9 stations of 3 lines. According to test results, we can figure out the concentration of radon by lines, times, and measuring points. So, it was found that ventilation conditions are the most important factors in the subway air quality. Finally, we suggested effective and economic management methods of air pollution in the subway.

  • PDF

Analysis on the contaminant transport in subsurface soil at Daeduk site (대덕부지 토양내 오염물 이동 해석)

  • Suh, Kyung-Suk;Kim, Eun-Han;Hwang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.155-163
    • /
    • 2003
  • The groundwater flow and contaminant transport numerical models have been established for analyzing the movements of pollutants in subsurface soil at Daeduk site. The groundwater flow and concentration of U-234 using the numerical models were simulated around Daeduk nuclear facilities. The computed groundwater flow was mainly advected toward the direction of east and southeast around HANARO in the site. The radioactive material entered into the subsurface soil was transported along the same direction with groundwater flow. The radioactive material deposited on the surface from the calculated concentration distributions was not affected by surrounding environment of the site.