• Title/Summary/Keyword: Radio Waves

Search Result 263, Processing Time 0.028 seconds

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

Radio relics in merging clusters of galaxies

  • Roh, Soonyoung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2019
  • Clusters of galaxies shape up through a series of hierarchical mergers. It is believed that major mergers lead to cluster-wide shock waves, which are manifested as radio relics. The 1RXS J0603.0+4213 and CIZA J2242.8+5301 clusters, for instance, contain Mpc-size giant radio relics in the outskirts. Synchrotron emission from these radio relics reveals the presence of relativistic electrons and the magnetic fields of a few ${\mu}G$ strength. The presence of such magnetic fields in the ICM has been explained by the so-called small-scale turbulent dynamo. To get quantitative measures for magnetic fields in clusters of galaxies, we investigate the development of turbulence and the follow-up amplification of magnetic fields through three-dimensional numerical magnetohydrodynamical (MHD) simulations. The turbulence is induced in highly stratified cluster media, and driven sporadically by major mergers. We here present the results, aiming to answer whether the turbulence dynamo scenario can explain the observed strength and scale of magnetic fields in clusters. Also, we discuss whether the observed properties of giant radio relics can be reproduced in our simulations.

  • PDF

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

An Analysis of Radio Interference in 800 MHz-Band from Japan (일본에서 도래하는 800 MHz 대역의 전파 간섭 분석)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.520-526
    • /
    • 2012
  • Along with the increase of demand of radio communication and with the rapid progress of communication systems, the radio frequency interference of neighbor nations is a matter of argue. This problem is a delicate matter which must be dealt with technical background. The radio interference has been experienced in the Korean TRS service on the south seashore due to the seashore base station in Japan. The radio interference problem between neighbor nations has become the matter of conflict. For the purpose to solve this problem, we has measured the radio waves that come from Japan mainly to Korea and also analyzed the radio interference.

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.93-103
    • /
    • 2017
  • We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

Refarming Plans and Radio Waves Law Improvements for Efficient Use of Spectrum (전파의 효율적 이용을 위한 주파수 재배치 방안 및 전파 법령 개선 방안 - LTE 서비스 제공을 위한 1.8 GHz 대역을 중심으로)

  • Seol, Seong-Ho;Kye, Kyung-Moon;Kweon, Soo-Cheon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.888-899
    • /
    • 2012
  • In this paper, we present refarming plans and discuss about Radio Waves Law improvements to promote the efficient use of the 1.8 GHz(3GPP band 3) which is emerging as the best prime band for LTE-FDD service. We think it is important to make use of the entire band for mobile use in accordance with contiguity requirement, especially for LTE such as European countries, which is currently separated between different uses. We present two options with illustrative examples to enable that objective. And we identify several provisions in the Radio Waves Law expected to cause controversy when activates one between two options as the policy, and discuss improvements of those.

Shock waves in and around clusters of galaxies

  • Hong, Sung-Wook E.;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2012
  • We examine the distribution and properties of shock waves within a couple of Mpc from cluster center with single-level grid simulations using up to 20483 grid zones. The effects of cooling/heating and feedbacks from galaxies are also incorporated. There are two different populations of shocks, merger shocks and accretion shocks. We discuss the manifestation of shocks through radio relics.

  • PDF

Wideband Rectangular Planar Monopole Antenna for OAM Wave Generation

  • Qasem, Nidal;Alamayreh, Ahmad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.55-59
    • /
    • 2021
  • Generating electromagnetic waves with Orbital Angular Momentum (OAM) properties is a fast-growing research subject in both radio and optics. This paper describes the generation of OAM carrying waves using a circular array of rectangular planar monopole antennas. The proposed design combines simplicity, compactness, and most importantly very wideband of operating frequencies (about 20-160 GHz, bandwidth ratio about 1:8) which makes it suitable for future applications.