Browse > Article
http://dx.doi.org/10.5303/JKAS.2017.50.4.93

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS  

Kang, Hyesung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.50, no.4, 2017 , pp. 93-103 More about this Journal
Abstract
We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.
Keywords
acceleration of particles; cosmic rays; galaxies: clusters: general; shock waves;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Slee, O. B., Roy, A. L., Murgia, M., Andernach, H., & Ehle, M. 2001, Four Extreme Relic Radio Sources in Clusters of Galaxies, AJ, 122, 1172   DOI
2 Stroe, A., van Weeren, R. J., Intema, H. T., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2013, Discovery of Spectral Curvature in the Shock Downstream Region: CIZA J2242.8+5301, A&AP, 555, 110   DOI
3 Stroe, A., Rumsey, C., Harwood, J. J., van Weeren, R. J., Rottgering, H. J. A., et al. 2014b, The Highest Frequency Detection of a Radio Relic: 16 GHz AMI Observations of the 'Sausage' Cluster, MNRAS, 441, L41   DOI
4 Stroe, A., Shimwell, T. W., Rumsey, C., et al. 2016, The Widest Frequency Radio Relic Spectra: Observations from 150 MHz to 30 GHz, MNRAS, 455, 2402   DOI
5 van Weeren, R. J., Brunetti, G., Bruggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204   DOI
6 van Weeren, R., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347   DOI
7 van Weeren, R., Bruggen, M., Rottgering, H. J. A., & Hoeft, M. 2011, Using Double Radio Relics to Constrain Galaxy Cluster Mergers: A Model of Double Radio Relics in CIZA J2242.8+5301, MNRAS, 418, 230   DOI
8 Yan, H., & Lazarian, A. 2002, Scattering of Cosmic Rays by Magnetohydrodynamic Interstellar Turbulence, PhRvL, 89, 281102
9 Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557   DOI
10 Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
11 Kang, H. 2015, Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters, JKAS, 48, 155
12 Kang, H. 2016a, Reacceleration Model for the 'Toothbrush' Radio Relic, JKAS, 49, 83
13 Kang, H. 2016b, Reacceleration Model for the 'Sausage' Radio Relic, JKAS, 49, 145 (Paper I)
14 Kang, H., & Ryu, D. 2016, Reacceleration Model for Radio Relics with Spectral Curvature, ApJ, 823, 13   DOI
15 Paul, S., Iapichino, L., Miniati, F., Bagchi, J., & Mannheim, K. 2011, Evolution of Shocks and Turbulence in Major Cluster Mergers, ApJ, 726, 17   DOI
16 Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97   DOI
17 Kang, H., Ryu, D., & Jones, T.W. 2017, Shock Acceleration Model for the Toothbrush Radio Relic, ApJ, 840, 42   DOI
18 Ogrean, G. A., Bruggen, M., van Weeren, R., et al. 2014, Challenges to Our Understanding of Radio Relics: X-Ray Observations of the Toothbrush Cluster, MNRAS, 440, 3416   DOI
19 Pierrard, V., & Lazar, M. 2010, Kappa Distributions: Theory and Applications in Space Plasmas, SoPh, 265, 153
20 Pinzke, A., Oh, S. P., & Pfrommer, C. 2013, Giant Radio Relics in Galaxy Clusters: Reacceleration of Fossil Relativistic Electrons?, MNRAS, 435, 1061   DOI
21 Ryu, D., & Vishniac, E. T. 1991, The Dynamic Instability of Adiabatic Blast Waves, ApJ, 368, 411   DOI
22 Sarazin C. L. 1999, The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission, ApJ, 520, 529   DOI
23 Akamatsu, H., vanWeeren, R. J., Ogrean, G. A., et al. 2015, Suzaku X-Ray Study of the Double Radio Relic Galaxy Cluster CIZA J2242.8+5301, A&AP, 582, 87   DOI
24 Basu, K., Vazza, F., Erler, J., & Sommer, M. 2016, The Impact of SZ Effect on Cm-Wavelength (1-30 GHz) Observation of Galaxy Cluster Radio Relics, A&AP, 591, A142   DOI
25 Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. of Modern Physics D, 23, 30007
26 de Gasperin, F., Ogrean, G. A., van Weeren, R. J., et al. 2015, Abell 1033: Birth of a Radio Phoenix, MNRAS, 448, 2197   DOI
27 Brunetti, G., & Lazarian, A. 2007, Compressible Turbulence in Galaxy Clusters: Physics and Stochastic Particle Reacceleration MNRAS, 378, 245   DOI
28 Brunetti, G., & Lazarian, A. 2011, Particle Reacceleration by Compressible Turbulence in Galaxy Clusters: Effects of a Reduced Mean Free Path MNRAS, 412, 817
29 Clarke, T. E., Randall S. W., Sarazin, C. L., et al. 2013, Chandra View of the Ultra-Steep Spectrum Radio Source in A2443: Merger Shock-Induced Compression of Fossil Radio Plasma?, ApJ, 772, 84   DOI
30 Donnert, J. M. F., Stroe, A., Brunetti, G., et al. 2016, Magnetic Field Evolution in Giant Radio Relics Using the Example of CIZA J2242.8+5301, MNRAS, 462, 2014   DOI
31 Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973   DOI
32 Ensslin, T. A. 1999, Radio Ghosts, in Ringberg Workshop on Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. P. S. H. Bohringer, L. Feretti, MPE Report 271, 275
33 Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev, 20, 54   DOI
34 Fujita, Y., Takizawa, M., Yamazaki, R., Akamatsu, H., & Ohno, H. 2015, Turbulent Cosmic-Ray Reacceleration at Radio Relics and Halos in Clusters of Galaxies ApJ, 815,116   DOI
35 Hong, E. W., Kang, H., & Ryu, D. 2015, Radio and X-Ray Shocks in Clusters Of Galaxies, ApJ, 812, 49   DOI