• Title/Summary/Keyword: Radio TLC

Search Result 15, Processing Time 0.022 seconds

A study of 99mTc-sestamibi labeling condition using radio-chromatography

  • Moon, Sung-Hyun;Lee, Yun-Sang;Lee, Dong Soo;Chung, June-Key;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.38-43
    • /
    • 2017
  • Tc-99m labeled sestamibi ($^{99m}Tc$-MIBI) is one of most widely used radiopharmaceuticals for myocardial SPECT imaging. Radiolabeling of $^{99m}Tc$-MIBI is recommended by heating in $100^{\circ}C$ water bath for 15 min. However, the water bath might be a source of contamination. Thus, if radiolabeling of $^{99m}Tc$-sestamibi can be performed at room temperature, then it would be more convenient to use in clinical application. In this study, we performed the radiolabeling of $^{99m}Tc$-MIBI in different temperature conditions or using different instruments to find out the efficient labeling condition. We studied the $^{99m}Tc$-MIBI labeling at room temperature or $100^{\circ}C$ heating block, and checked the labelling yields every 1 min for 10 min using radio-TLC with 2 different eluents-saline and acetone. From the experiment, we confirmed that the $^{99m}Tc$-MIBI can be labeled over 90% yield but not completed at room temperature. However, the $^{99m}Tc$-MIBI labeling was completed when it was performed in the $100^{\circ}C$ heating block. Finally, we proved that heating is essential for complete $^{99m}Tc$-MIBI labelling, furthermore using heating block is also possible instead of water bath.

Variations in radiochemical purity according to temperature of storage and radical scavenger

  • Kim, Deok Ju;Kim, Min Soo;Kim, Jin Seok;Bae, Yeon Gyu;Sun, Chan Young;Choi, Seung Jae;Lee, Sang-Yoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.132-136
    • /
    • 2016
  • Radiolysis is the process of decreasing in Radio-Chemical Purity (RCP) of [$^{18}F$]FDG by direct effect and indirect effect of self Radio-activity. The objective of our study was to figure out the ideal conditions which minimize damages of quality of [$^{18}F$]FDG using radical scavenger and controlling temperature of storage.

Study on Labeling Efficiency of $^{99m}Tc$-HMPAO ($^{99m}Tc$-HMPAO 표지효율에 대한 고찰)

  • Hyeon, Jun Ho;Lim, Hyeon Jin;Kim, Ha Kyun;Cho, Seong Uk;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.131-134
    • /
    • 2012
  • Purpose : The labeling efficiency of radiopharmaceuticals in nuclear medicine is important in terms of accuracy and reliability of the examination. Usually $^{99m}Tc$-HMPAO used for brain SPECT scan is chemically unstable since lots of impurities are existing. Therefore, occurrence of loss of labeling efficiency is easy to appear. In this paper, labeling and use of $^{99m}Tc$-HMPAO should be helpful through experiments on factors affecting the labeling efficiency of $^{99m}Tc$-HMPAO. Materials and Methods : Domestic HMPAO vials (Dong-A) used for brain SPECT scan were tested. Domestic Samyeong Generator 55.5 GBq (1,500 mCi), TLC measurement sets (ITLC-SG, butanone, saline, TLC chamber) and radio-TLC scanner (Advantest, Bioscan) were used. In the first experiment, after eluting generator at 1, 8, 16, 24, 28 hours apart, each eluted $^{99m}Tc$-pertechnetate were labeled with HMPAO and the labeling efficiency was measured. In the second experiment, after eluting $^{99m}Tc$-pertechnetate from a generator, $^{99m}Tc$-pertechnetate was drawn at 0, 1, 3, 6 hours. And each drawn $^{99m}Tc$-pertechnetate were labeled with HMPAO for measuring labeling efficiency. In the third experiment, labeling efficiency was measured at 0, 0.5, 3, 5, 7 hours after labeling $^{99m}Tc$-HMPAO. Results : In the first experiment, measured values were appeared 95.05, 94.64, 94.94, 95.64, 96.76% in passing order of time. In the second experiment, measured values were appeared 94.38, 94.23, 93.26, 91.03% in passing order of time. In the third experiment, measured values were appeared 95.76, 94.17, 88.19, 83.6, 76.86% in passing order of time. Conclusion : In the first experiment of this paper, labeling efficiency of $^{99m}Tc$-HMPAO labeled with $^{99m}Tc$-pertechnetate eluted after 24 hours from first elution. Additional experiments will be needed to discuss for usability. In the second experiment, the labeling efficiency was slightly decreased in chronological order, but it was measured higher than 90%. Also, additional experiments will be needed to discuss for usability. In the third experiment, the labeling efficiency was decreased considerably. Especially, within 3 hours after the labeling is recommended to use $^{99m}Tc$-HMPAO

  • PDF

Synthesis of 125I-labeled tetrazine for efficient radiolabeling of human serum albumin

  • Shim, Ha Eun;Jeon, Jongho
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.98-102
    • /
    • 2017
  • We demonstrate a detail protocol for the radiosynthesis of a $^{125}I-labeled$ tetrazine prosthetic group and its application to the efficient radiolabeling of trans-cyclooctene-group conjugated human serum albumin (3) using inverse-electron-demand Diels-Alder reaction. Radioiodination of the stannylated precursor (2) was carried out by using [$^{125}I$]NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified $^{125}I-labeled$ azide ([$^{125}I$]1) was obtained with high radiochemical yield ($65{\pm}8%$, n = 5) and excellent radiochemical purity (>99%). Inverse-electron-demand Diels-Alder reaction between ([$^{125}I$]1) and 3 gave the $^{125}I-labeled$ human serum albumin ([$^{125}I$]4) with more than 99% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly indicate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of trans-cyclooctene-group containing biomolecules.

Synthesis of 125I-labeled thiol-reactive prosthetic group for site-specific radiolabeling of human serum albumin

  • Shim, Ha Eun;Song, Lee;Jeon, Jongho
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • We demonstrate a detail protocol for the radiosynthesis of an $^{125}I$-labeled MSTP prosthetic group and its application to the efficient radiolabeling of human serum albumin (HSA). Radioiodination of the precursor (2) was carried out by using $[^{125}I]$NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified $^{125}I$-labeled MSTP ($[^{125}I]1$) was obtained with high radiochemical yield ($73{\pm}5%$, n = 3) and excellent radiochemical purity (>99%). Site-specific reaction between ($[^{125}I]1$) and HSA gave the $^{125}I$-labeled human serum albumin ($[^{125}I]3$) with more than 99% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly demonstrate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of thiol-bearing biomolecules.

Synthesis of 68Ga-labeled gold nanoparticles for tumor targeted positron emission tomography imaging

  • Jeon, Jongho;Choi, Mi Hee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • Herein we present the synthesis of $^{68}Ga$-labeled gold nanoparticles for in vivo PET imaging. A novel chelator DTPA-Cys was easily prepared from diethylenetriaminepentaacetic dianhydride in high yield. The ${\alpha}_v{\beta}_3$ integrin receptor targeted gold nanoparticle probe was synthesized by using DTPA-Cys, polyethylene glycol and cRGD peptide. $^{68}Ga$ labeling of cRGD conjugated gold nanoparticle was carried out at $40^{\circ}C$ for 30 min. Observed radiochemical yield was more than 75% as determined by radio-TLC and the probe was purified by centrifugation. In vitro stability test showed that 90% of $^{68}Ga$-labeled gold nanoparticle probe was stable in FBS for 1 h. Those results demonstrated that $^{68}Ga$-labeled gold nanoparticle could be used as a potentially useful probe for specific tumor imaging.

Fast and Easy Drying Method for the Preparation of Activated [18F]Fluoride Using Polymer Cartridge

  • Seo, Jai-Woong;Lee, Byoung-Se;Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.71-76
    • /
    • 2011
  • An efficient nucleophilic [$^{18}F$]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of $K_2CO_3-K_{222}$, several organic solution containing inert organic salts were used to release [$^{18}F$]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix$^{(R)}$ (PS-$HCO_3$) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [18F]fluorination by suppressing eliminated side product. Consequent [$^{18}F$]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

Development of Dual FDG Auto Synthesis Module (듀얼 FDG 자동합성장치 개발)

  • Jeong, Cheol-Ki;Lee, Goung-Jin;Hur, Min-Goo;Jang, Hong-Suk;Min, Young-Don
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.313-316
    • /
    • 2011
  • [$^{18}F$]FDG (2-[$^{18}F$] Fluoro-2-deoxy-D-Glucose), which is required Automated Synthetic Module for production, is most often used Radiopharmaceuticals in nuclear medicine. In this study, an Automated Synthesis Module was developed to produce FDG in two consecutive time when F-18 feds continuously by modifying a domestic FDG Automated Synthetic Module on structural geometry and control system. The results were showed that the Average Synthesis Yields on the developed Automated Synthetic Module were $45{\pm}3%$ (n=20), $50{\pm}3%$ (n=20) respectively. The Quality Control results, such as Radio TLC, Radiochemical purity, Gamma-counter, pH, LAL Test, Micro bacteria test, showed in same level with domestic [$^{18}F$]FDG Auto-Synthetic modules. Therefore, if some features were improved by considering the components life time and appearance, commercial sales can be expected because of low price and easy maintenance compared with foreign products.

Radiolysis Assessment of $^{18}F$-FDG According to Automatic Synthesis Module (자동합성장치에 따른 $^{18}F$-FDG의 방사선분해 평가)

  • Kim, Si-Hwal;Kim, Dong-Il;Chi, Yong-Gi;Choi, Sung-Wook;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Purpose : Among quality control items, the radiochemical impurity must be below 10% of total radioactivity. In this regard, as the recently commercialized automatic synthesis module produces a large amount of 18F-FDG, radiolysis of radiopharmaceuticals is very likely to occur. Thus, this study compared the changes in radiochemical purity regarding radiolysis of $^{18}F$-FDG according to automatic synthesis module. Materials and methods : Cyclotron (PETtrace, GE Healthcare) was used to produce $^{18}F$ and automatic synthesis module (FASTlab, Tracerlab MX, GE Healthcare) was used to achieve synthesis into FDG. For radiochemical purity, Radio-TLC Scanner (AR 2000, Bioscan), GC (Gas Chromatograph, Agilent 7890A) was used to measure the content of ethanol included in $^{18}F$-FDG. Glass board applied with silica gel ($1{\times}10cm$) was used for stationary phase while a mixed liquid formed of acetonitrile and water (ratio 19:1) was used for mobile phase. High-concentration and low-concentration $^{18}F$-FDG were produced in each synthesis module and the radiochemical purity was measured every 2 hours. Results : The purity in low-concentration (below 2.59 GBq/mL) was measured as 99.26%, 98.69%, 98.25%, 98.09% in Tracerlab MX and as 99.09%, 97.83%, 96.89%, 96.62% in FASTlab according to 0, 2, 4, 6 hours changes, respectively. The purity in high-concentration (above 3.7 GBq/mL) was measured as 99.54%, 96.08%, 93.77%, 92.54% in Tracerlab MX and as 99.53%, 95.65%, 92.39%, 89.82% in FASTlab according to 0, 2, 4, 6 hours changes, respectively. Also, ethanol was not detected in GC of $^{18}F$-FDG produced in FASTlab, while 100~300 ppm ethanol was detected in Tracerlab MX. Conclusion : Whereas the change of radiochemical purity was only 3% in low-concentration $^{18}F$-FDG, the change was rapidly increased to 10% in high-concentration. Also, higher radiolysis were observed in $^{18}F$-FDG produced in FASTlab than Tracerlab MX. This is because ethanol is included in the synthesis stage of Tracerlab MX but not in the synthesis stage of FASTlab. Thus, radiolysis is influenced by radioactivity concentration than the inclusion of ethanol, which is the radioprotector. Therefore, after producing high-concentration $^{18}F$-FDG, the content must be diluted through saline to lower concentration.

  • PDF

Synthesis and in vitro evaluation of 99mTc-labeled tetraiodothyroacetic acid for tumor angiogenesis imaging

  • Kim, Hyunjung;Koo, Hyun-Jung;Choe, Yearn Seong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.3-9
    • /
    • 2020
  • Tetraiodothyroacetic acid (tetrac) is a derivative of thyroid hormone T4 and causes anti-angiogenesis by blocking T4 binding to integrin αvβ3. In this study, we synthesized [99mTc]Tc-Cys-Asp-Gly(CDG)-tetrac and evaluated it in vitro as a tumor angiogenesis imaging ligand. The CDG was conjugated to tetrac as a chelator for technetium-99m labeling. The cold vial containing CDG-tetrac, sodium glucoheptonate, and reducing agent was completed under nitrogen-filled atmospheric glove bag. [99mTc]Tc-CDG-tetrac was synthesized in quantitative yield by heating the cold vial with [99mTc]TcO4- at 100℃ for 30 min. In vitro serum stability of [99mTc]Tc-CDG-tetrac was measured by incubating the radioligand in 50% fetal bovine serum at 37℃ and analyzing the incubation mixture by radio-TLC, which showed high stability over 6 h (≥ 98%). Cell binding study was carried out by incubating [99mTc]Tc-CDG-tetrac with human umbilical vein endothelial (HUVE) cells at 37℃ for 6 h. The cell binding of the radioligand increased from 100% at 0.5 h to 293.7% at 6 h in a time-dependent manner. For blocking study, the cells were incubated with the radioligand in the presence of either tetrac (20 μM) or cRGDyK (20 μM) at 37℃ for 4 h. The results demonstrated that the cell binding of the radioligand was inhibited by tetrac (19.1%) or cRGDyK (35.6%), indicating specific binding of the radioligand to integrin αvβ3. Thus, this study suggests that [99mTc]Tc-CDG-tetrac may be a potential radioligand for tumor angiogenesis imaging.