DOI QR코드

DOI QR Code

Fast and Easy Drying Method for the Preparation of Activated [18F]Fluoride Using Polymer Cartridge

  • Seo, Jai-Woong (Department of Chemistry, Inha University) ;
  • Lee, Byoung-Se (Research Institute of Labeling, FutureChem Co., Ltd.) ;
  • Lee, Sang-Ju (Department of Chemistry, Sogang University) ;
  • Oh, Seung-Jun (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chi, Dae-Yoon (Research Institute of Labeling, FutureChem Co., Ltd.)
  • Received : 2010.09.16
  • Accepted : 2010.10.21
  • Published : 2011.01.20

Abstract

An efficient nucleophilic [$^{18}F$]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of $K_2CO_3-K_{222}$, several organic solution containing inert organic salts were used to release [$^{18}F$]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix$^{(R)}$ (PS-$HCO_3$) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [18F]fluorination by suppressing eliminated side product. Consequent [$^{18}F$]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

Keywords

References

  1. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501-1516. https://doi.org/10.1021/cr0782426
  2. Willmann, J. K.; van Bruggen, N.; Dinkelborg, L. M.; Gambhir, S. S. Nat. Rev. Drug Discovery 2008, 591-607.
  3. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem. Int. Ed. 2008, 47, 8998-9033. https://doi.org/10.1002/anie.200800222
  4. Phelps, M. E. Proc. Natl. Acad. Sci. USA 2000, 97, 9226-9233. https://doi.org/10.1073/pnas.97.16.9226
  5. Levin, C. S. Eur. J. Med. Mol. Imaging 2005, 32, S325-S345. https://doi.org/10.1007/s00259-005-1973-y
  6. Kilbourn, M. R.; Hood, J. T.; Welch, M. J. Appl. Radiat. Isot. 1984, 35, 599-602. https://doi.org/10.1016/0020-708X(84)90102-9
  7. Bergman, J.; Solin, O. Nucl. Med. Biol. 1997, 24, 677-683. https://doi.org/10.1016/S0969-8051(97)00078-4
  8. Nishijima, K.-I.; Kuge, Y.; Tsukamoto, E.; Seki, K.-I.; Ohkura, K.; Magata, Y.; Tanaka, A.; Nagatsu, K.; Tamaki, N. Appl. Radiat. Isot. 2002, 57, 43-49. https://doi.org/10.1016/S0969-8043(02)00070-2
  9. Tilyou, S. M. J. Nucl. Med. 1991, 32, 15N-26N.
  10. Toorongian, S. A.; Mulholland, G. K.; Jewett, D. M.; Bachelor, M. A.; Kilbourn, M. R. Nucl. Med. Biol. 1990, 17, 273-279.
  11. Jewett, D. M.; Toorongian, S. A.; Mulholland, G. K.; Watkins, G. L.; Kilbourn, M. R. Appl. Radiat. Isot. 1988, 39, 1109-1111. https://doi.org/10.1016/0883-2889(88)90001-9
  12. Ohsaki, K.; Endo, Y.; Yamazaki, S.; Tomoi, M.; Iwata, R. Appl. Radiat. Isot. 1998, 49, 373-378. https://doi.org/10.1016/S0969-8043(97)00289-3
  13. Okarvi, S. M. Eur. J. Nucl. Med. 2001, 28, 929-938. https://doi.org/10.1007/s002590100508
  14. Suehiro, M.; Vallabhajosula, S.; Goldsmith, S. J.; Ballon, D. J. Appl. Radiat. Isot. 2007, 65, 1350-1358. https://doi.org/10.1016/j.apradiso.2007.07.013
  15. Coenen, H. H.; Klatte, B.; Knochel, A.; Schuller, M.; Stocklin, G. J. Labelled Compd. Radiopharm. 1986, 23, 455-466. https://doi.org/10.1002/jlcr.2580230502
  16. Hamacher, K.; Coenen, H. H.; Stocklin, G. J. Nucl. Med. 1986, 27, 235-238.
  17. Aerts, J.; Voccia, S.; Lemaire, C.; Giacomelli, F.; Goblet, D.; Thonon, D.; Plenevaux, A.; Warnock, G.; Luxen, A. Tetrahedron Lett. 2010, 51, 64-66. https://doi.org/10.1016/j.tetlet.2009.10.085
  18. Lee, B. S.; Seo, J. W.; Lee, S. J.; Oh, S. J.; Chi, D. Y. J. Labelled Compd. Radiopharm. 2007, 50 (S1), S165. https://doi.org/10.1002/jlcr.1216
  19. Lemaire, C. F.; Aerts, J. J.; Voccia, S.; Libert, L. C.; Mercier, F.; Goblet, D.; Plenevaux, A. R.; Luxen, A. J. Angew. Chem. Int. Ed. 2010, 49, 3161-3164. https://doi.org/10.1002/anie.200906341
  20. Moon, B. S.; Park, J. H.; Lee, H. J.; Kim, J. S.; Kil, H. S.; Lee, B. S.; Chi, D. Y.; Lee, B. C.; Kim, Y. K.; Kim, S. E. Appl. Radiat. Isot. 2010, 68, 2279-2284. https://doi.org/10.1016/j.apradiso.2010.06.016
  21. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278-10279. https://doi.org/10.1021/ja026242b
  22. Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354. https://doi.org/10.5012/bkcs.2006.27.3.345
  23. Kim, D. W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. J. Am. Chem. Soc. 2006, 128, 16394-16397. https://doi.org/10.1021/ja0646895
  24. Lee, S. J.; Oh, S. J.; Chi, D. Y.; Kang, S. H.; Kil, H. S.; Kim, J. S.; Moon, D. H. Nucl. Med. Biol. 2007, 34, 345-351. https://doi.org/10.1016/j.nucmedbio.2007.02.007
  25. Kim, D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H. Angew. Chem. Int. Ed. 2008, 47, 8404-8406. https://doi.org/10.1002/anie.200803150
  26. Lee, C.-C.; Sui, G.; Elizarov, A.; Shu, C. J.; Shin, Y.-S.; Dooley, A. N.; Juang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Phelps, M. E.; Quake, S. R.; Tseng, H.-R. Science 2005, 310, 1793-1796. https://doi.org/10.1126/science.1118919
  27. Gillies, J. M.; Prenant, C.; Chimon, G. N.; Smethurst, G. J.; Perrie, W.; Hamblett, I.; Dekker, B. A.; Zweit, J. Appl. Radiat. Isot. 2006, 64, 325-332. https://doi.org/10.1016/j.apradiso.2005.08.007

Cited by

  1. Degradation of acetonitrile in eluent solutions for [18F]fluoride PET chemistry: impact on radiosynthesis of [18F]FACBC and [18F]FDG vol.55, pp.3, 2012, https://doi.org/10.1002/jlcr.1956
  2. Microfluidics: A Groundbreaking Technology for PET Tracer Production? vol.18, pp.7, 2013, https://doi.org/10.3390/molecules18077930
  3. module vol.56, pp.12, 2013, https://doi.org/10.1002/jlcr.3067
  4. F]FMISO) vol.56, pp.14, 2013, https://doi.org/10.1002/jlcr.3115
  5. F]Fluoride vol.4, pp.1, 2015, https://doi.org/10.1002/open.201402081
  6. Titania-Catalyzed Radiofluorination of Tosylated Precursors in Highly Aqueous Medium vol.137, pp.17, 2015, https://doi.org/10.1021/jacs.5b02659
  7. Applications of Fluorine in Medicinal Chemistry vol.58, pp.21, 2015, https://doi.org/10.1021/acs.jmedchem.5b00258
  8. F-labeling of internalizing biomolecules vol.14, pp.4, 2016, https://doi.org/10.1039/C5OB02258D
  9. adsorption vol.18, pp.21, 2016, https://doi.org/10.1039/C6GC01416J
  10. F]FDG synthesis and its application to a lab-on-chip platform vol.52, pp.4, 2016, https://doi.org/10.1039/C5CC07106B
  11. DMAP-BODIPY Alkynes: A Convenient Tool for Labeling Biomolecules for Bimodal PET-Optical Imaging vol.20, pp.40, 2014, https://doi.org/10.1002/chem.201402379
  12. 18F-labelling innovations and their potential for clinical application vol.6, pp.3, 2018, https://doi.org/10.1007/s40336-018-0280-0
  13. High Yielding [18F]Fluorination Method by Fine Control of the Base vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2177
  14. Development of Customized [ 18 F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-00110-1
  15. A concisely automated synthesis of TSPO radiotracer [18F]FDPA based on spirocyclic iodonium ylide method and validation for human use vol.63, pp.3, 2011, https://doi.org/10.1002/jlcr.3824
  16. 18F‐labeled 1,2,3‐triazole‐linked Glu‐urea‐Lys‐based PSMA ligands have good pharmacokinetic properties for positron emission tomography imaging of prosta vol.80, pp.16, 2020, https://doi.org/10.1002/pros.24062
  17. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18 F-fluorination chemistry vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-61845-y
  18. Automated synthesis of the 16α-[18F]fluoroestradiol ([18F]FES): minimization of precursor amount and resulting benefits vol.108, pp.12, 2020, https://doi.org/10.1515/ract-2020-0058
  19. Aliphatic 18 F‐Radiofluorination: Recent Advances in the Labeling of Base‐Sensitive Substrates** vol.16, pp.17, 2011, https://doi.org/10.1002/cmdc.202100303
  20. Insights into Elution of Anion Exchange Cartridges: Opening the Path toward Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers vol.4, pp.5, 2011, https://doi.org/10.1021/acsptsci.1c00133
  21. Phase Transfer Catalysts and Role of Reaction Environment in Nucleophilc Radiofluorinations in Automated Synthesizers vol.12, pp.1, 2011, https://doi.org/10.3390/app12010321