Browse > Article
http://dx.doi.org/10.22643/JRMP.2018.4.2.85

Synthesis of 125I-labeled thiol-reactive prosthetic group for site-specific radiolabeling of human serum albumin  

Shim, Ha Eun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Song, Lee (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Jeon, Jongho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.4, no.2, 2018 , pp. 85-89 More about this Journal
Abstract
We demonstrate a detail protocol for the radiosynthesis of an $^{125}I$-labeled MSTP prosthetic group and its application to the efficient radiolabeling of human serum albumin (HSA). Radioiodination of the precursor (2) was carried out by using $[^{125}I]$NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified $^{125}I$-labeled MSTP ($[^{125}I]1$) was obtained with high radiochemical yield ($73{\pm}5%$, n = 3) and excellent radiochemical purity (>99%). Site-specific reaction between ($[^{125}I]1$) and HSA gave the $^{125}I$-labeled human serum albumin ($[^{125}I]3$) with more than 99% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly demonstrate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of thiol-bearing biomolecules.
Keywords
Radiolabeling; Radioactive iodine; Site-specific reaction; MSTP; Human serum albumin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev 2005;34:153-163.   DOI
2 Gupta S, Batra S, Jain M. Antibody labeling with radioiodine and radiometals Methods Mol Biol 2014;1141:147-157.
3 Mushtaq S, Jeon J, Shaheen A, Jang BS, Park SH. Critical analysis of radioiodination techniques for micro and macro organic molecules. J Radioanal Nucl Chem 2016;309:859-889.
4 Hussain AA, Awad R, Crooks PA, Dittert LW. Chloramine-T in radiolabeling techniques. I. Kinetics and mechanism of the reaction between chloramine-T and amino acids. Anal Biochem 1993;214:495-499.   DOI
5 Albu SA, Al-Karmi SA, Vito A, Dzandzi JP, Zlitni A, Beckford-Vera D, Blacker M, Janzen N, Patel RM, Capretta A, Valliant JF. $^{125}I$-Tetrazines and Inverse-Electron-Demand Diels-Alder Chemistry: A Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies. Bioconjug Chem 2016;27:207-216.   DOI
6 Jeon J, Shim HE, Mushtaq S, Choi MH, Park SH, Choi DS, Jang BS. An Optimized Protocol for the Efficient Radiolabeling of Gold Nanoparticles by Using a $^{125}I$-labeled Azide Prosthetic Group. J Vis Exp 2016;116:e54759.
7 Kornasiewicz O, Debski M, Grat M, Lenartowicz B, Stepnowska M, Szalas A, Bar-Andziak E, Krawczyk M. Enzymatic activity of type 1 iodothyronine deiodinase in selected liver tumors. Arch Med Sci 2014;10:801-805.
8 Jeon J, Kang JA, Shim HE, Nam YR, Yoon S, Kim HR, Lee DE, Park SH. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strain-promoted copper-free click reaction. Bioorg Med Chem 2015;23:3303-3308.   DOI
9 Choi MH, Shim HE, Nam YR, Kim HR, Kang JA, Lee DE, Park SH, Choi DS, Jang BS, Jeon J. Synthesis and evaluation of an $^{125}I$-labeled azide prosthetic group for efficient and bioorthogonal radiolabeling of cyclooctyne-group containing molecules using copper-free click reaction. Bioorg Med Chem Lett 2016;26:875-878.   DOI
10 Choi MH, Shim HE, Yun SJ, Kim HR, Mushtaq S. Lee CH, Park SH, Choi DS, Lee DE, Byun EB, Jang BS, Jeon J. Highly efficient method for $^{125}I$-radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction. Bioorg Med Chem 2016;24:2589-2594.   DOI
11 Mushtaq S. Choi DS, Jeon J. Radiosynthesis of 125I-labeled 2-cyanobenzothiazole: A new prosthetic group for efficient radioiodination reaction. J Radiopharm Mol Prob 2017;3:44-51.
12 Cao W, Lu X, Cheng Z. The advancement of human serum albumin-based molecular probes for molecular imaging. Curr Pharm Des 2015;21:1908-1915.   DOI
13 Chen X, Wu H, Park CM, Poole TH, Keceli G, Devarie-Baez NO, Tsang AW, Lowther WT, Poole LB, King SB, Xian M, Furdui CM. Discovery of heteroaromatic sulfones as a new class of biologically compatible thiol-selective reagents. ACS Chem Biol 2017;12:2201-2208.   DOI
14 Shim HE, Mushtaq S, Song L, Lee CH, Lee H, Jeon J. Development of a new thiol-reactive prosthetic group for site-specific labeling of biomolecules with radioactive iodine. Bioorg Med Chem Lett 2018;28:2875-2878.   DOI
15 Yang M, Hoppmann S, Chen L, Cheng Z. Human serum albumin conjugated biomolecules for cancer molecular imaging. Curr Pharm Des 2012;18:1023-1031.   DOI
16 Henriksen UL, Henriksen JH, Bendtsen F, Moller S. $^{99m}Tc$-labelled human serum albumin cannot replace $^{125}I$-labelled human serum albumin to determine plasma volume in patients with liver disease. Clin Physiol Funct Imaging 2013;33:211-217.   DOI
17 Yasumoto K, Takata M, Ueno H, Tomoda F, Inoue H. Relation of circulating blood volume to left ventricular geometry in essential hypertension. Hypertens Res 2002;25:703-710.   DOI