• Title/Summary/Keyword: Radio Propagation Model

Search Result 128, Processing Time 0.021 seconds

Study of the Propagation Model considering Refractive Channel Environment between Korea and Japan (한일간 대기굴절 채널환경을 고려한 전파모델 연구)

  • Lee, Kyung-Ryang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • Japan and South Korea since 2004 until now for the broadcast channel interference, by measuring the ongoing conflict are expected to prepare for the future, but Korea's preparation are not enough. In this study, it is pointed that cause of the interference through channel environmental analysis, and effective application of propagation prediction model was carried out between neighboring countries. Between Korea and Japan, radio duct occurs on hold due to changes in the refractive gradient, and comfirmed occurrence of broadcasts interference. The results are presented that 1% time variable, -91.80 [N-units/km], 10% time variable, -43.92 [N-units/km], 50% time variable, -586.19 [N-units/km], for effective refractive gradient. Proposed refractive gradient could contribute to actual radio propagation prediction.

A Location Technique Based On Calibrated Radio Frequency Propagation Model For Wireless Local Area Networks (교정된 전파전파 모델에 기반한 WLAN 측위 기법)

  • Kim, Hee-Sung;Shim, Ju-Young;Choi, Wan-Sik;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.760-766
    • /
    • 2008
  • This paper proposes an efficient location technique to find an indoor location under the IEEE 802.11 wireless local area networks. The proposed method is based on the range measurements obtained from a simple radio frequency propagation model. Thus, unlike the radio frequency fingerprint correlation method, it does not suffer from the computational burden during the real-time location service period and can quickly reply the location requests of many users at the same time. To increase the location accuracy in spite of the frequent non-line-of-sight error occurrences, the proposed method calibrates the distortion of the non-line-of-sight error by a simple measurement surveying procedure that does not require the surveyor's manual interaction. Experimental results show the capability of the proposed method.

A 3-D Propagation Model Considering Building Transmission Loss for Indoor Wireless Communications

  • Choi, Myung-Sun;Park, Han-Kyu;Heo, Youn-Hyoung;Oh, Sang-Hoon;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.247-249
    • /
    • 2006
  • In the development of a new wireless communications system, a versatile and accurate radio channel for indoor communications is needed. In particular, the investigation of radio transmission into buildings is very important. In this letter, we present an improved three-dimensional electromagnetic wave propagation prediction model for indoor wireless communications that takes into consideration building penetration loss. A ray tracing technique based on an image method is also employed in this study. Three-dimensional models can predict any complex indoor environment composed of arbitrarily shaped walls. A speed-up algorithm, which is a modified deterministic ray tube method, is also introduced for efficient prediction and computation.

  • PDF

Analysis of Radio-Wave Propagation Characteristics in Curved Tunnel (곡선 터널 내에서 전파특성 분석)

  • 김영문;정민석;진용옥;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1017-1024
    • /
    • 2002
  • In this paper, we present the analysis of radio wave propagation characteristics in curved tunnels. Tunnel propagation models are performed in two cases which are using ray-tracing method for straight tunnels and geometrical optics extension to the standard hybrid waveguide model for curved ones. By regression analysis for measured power based on distance between the transmitter and the received antenna in tunnels that have 3.5 m $\times$ 6 m cross section and limited wall depth path loss are 0.19 dB/m for straight section and 0.68 dB/m for curved ones. By comparing model analysis with measurement in tunnels, it has been shown that the simulated results of tunnel propagation models are similar to the measured values.

Ionospheric Correction for retrieving atmospheric variables from GPS occultation data

  • Huang Cheng-Yung;Liou Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.43-46
    • /
    • 2005
  • [1] There are systematical errors associated with ionospheric influence in retrieving key atmospheric parameters from radio occultation (RO) soundings. In order to obtain better-quality retrievals, we develop a new method, hereafter called National Central University Radio Occultation (NCURO) scheme, to reduce the ionospheric influence. The excess phase is divided into two parts, namely geometric excess length and path excess length (excess length along ray path due to refractivity effect). An excess phase equation is presented and implemented in the NCURO scheme Whose performance is evaluated through comparisons with model simulation and experimental data. The model simulation is based on the use of the ionospheric model 002001 and atmospheric model NRLMSISE-OO. Results show that the NCURO scheme significantly reduces the ionospheric influence at altitudes above 70 km as does the scheme presented in the literature, and provides better corrections for the atmospheric profile. INDEX TERMS: 2400 Ionosphere: Ionosphere; 6964 Radio Science: Radio wave propagation; 6969 Radio Science: Remote sensing.

  • PDF

An Accurate Radio Channel Model for Wireless Sensor Networks Simulation

  • Alejandro Martfnez-Sala;Jose-Maria Molina-Garcia-Pardo;Esteban Egea-Lopez;Javier Vales-Alonso;Leandro Juan-Llacer;Joan Garcia-Haro
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.401-407
    • /
    • 2005
  • Simulations are currently an essential tool to develop and test wireless sensor networks (WSNs) protocols and to analyze future WSNs applications performance. Researchers often simulate their proposals rather than deploying high-cost test-beds or develop complex mathematical analysis. However, simulation results rely on physical layer assumptions, which are not usually accurate enough to capture the real behavior of a WSN. Such an issue can lead to mistaken or questionable results. Besides, most of the envisioned applications for WSNs consider the nodes to be at the ground level. However, there is a lack of radio propagation characterization and validation by measurements with nodes at ground level for actual sensor hardware. In this paper, we propose to use a low-computational cost, two slope, log-normal path­loss near ground outdoor channel model at 868 MHz in WSN simulations. The model is validated by extensive real hardware measurements obtained in different scenarios. In addition, accurate model parameters are provided. This model is compared with the well-known one slope path-loss model. We demonstrate that the two slope log-normal model provides more accurate WSN simulations at almost the same computational cost as the single slope one. It is also shown that the radio propagation characterization heavily depends on the adjusted model parameters for a target deployment scenario: The model parameters have a considerable impact on the average number of neighbors and on the network connectivity.

A Study on LEE Model Application for Propagation Loss Estimation of UHF band in Mountain Area (산악지형에서의 UHF대역 전파손실예측을 위한 LEE모델 적용방안 연구)

  • Lee, Changwon;Jeon, Yongchan;Shin, Imseob;Kim, Jin-Goog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we have compared some radio propagation models in order to verify the performance of W.C.Y LEE propagation model in mountain area. The four propagation models, which are Okumura-Hata, ITU-R P.525, Egli and W.C.Y. LEE, are analyzed by comparing the differences between measured values and propagation loss estimation values. And a correction method for W.C.Y LEE model is suggested to improve the performance of W.C.Y. LEE model with measured data in mountain area. Simulation results show that the estimation error using W.C.Y LEE model is the lowest among four propagation models. Also, the results show that the corrected W.C.Y LEE model with suggested method improves the performance of propagation loss estimation.

Radio coverage prediction of RF-CBTC system under transmission power 10mW/MHz at K-AGT test line (경전철시험선에서 송신전력 10mW/MHz에 대한 열차제어용 무선시스템의 전파도달범위 예측)

  • Cho, Bong-Kwan;Jung, Jae-Il
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.589-595
    • /
    • 2007
  • Korea Railroad Research Institute has developed the driverless rubber-tired K-AGT (Korean-Automated Guideway Transit) system from 1999 to 2005 and has done its performance and reliability tests on the test line at Gyeongsan-city. Radio Frequency Communication-Based Train Control system of K-AGT, which employed Advanced Automated Train Control scheme, detects train position using the radio propagation delay between wayside and vehicle radio equipment. In this paper, we investigate whether the transmission power of radio system can be reduced to the permitted level announced by the Ministry of Information and Communication for license-free ISM(Industrial Scientific Medical) frequency bands. We first determine radio propagation model, using the measured data at test line, and perform simulation for radio coverage prediction. From the simulation results, we identify that the radio system operated with reduced power can provide good link quality in total test line.

Radio Propagation Characteristics of Different Frequency Bands in Multiple Paths According to Antenna Position in an Indoor Lobby Environment (실내 로비 환경에서 안테나 위치에 따른 다중 경로의 서로 다른 주파수 대역의 전파 특성)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The radio propagation characteristics of the 6, 10, and 17 GHz frequency bands in multiple paths in an indoor lobby environment were analyzed. The line-of-sight (LOS) and non-LOS (NLOS) paths were measured from a distance of 2-16 m (0.5 m intervals) from the transmitting to the receiving antenna positions. For basic transmission losses, three parameters were compared using the floating intercept path loss model corresponding to the path. For a root mean square delay spread, the measurement results were compared for cumulative probabilities of 10, 50, and 90%. Propagation loss and propagation delay occurred in all measured frequencies owing to the existence of pillars and an unusual lobby structure. Thus, a measurement scenario for an indoor lobby environment and the provision of standard measurement data was proposed. The results may facilitate research on the radio propagation characteristics of 5G and millimeter-wave bands in indoor lobby environments with various structures.

Propagation Characteristics from Ingested Sources in Human Body (인체 내부 소스에 의한 전파 특성)

  • Kim Bo-Mi;Kim Young-Sik;Kim Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.259-266
    • /
    • 2006
  • This paper presents the propagation characteristics from ingested sources in human body using the human model simulator. The simulator applies the FDTD method to the human data consisting of the human CAD and tissue data. After the accuracy of the simulator is verified, the received fields at one horizontal layer including the small intestine among the digestive organs are calculated in case that the electric field source is implanted in the center of the small intestine. The human propagation characteristics are illustrated by calculating the path loss per unit length according to various received positions from the simulated results.