Propagation Characteristics from Ingested Sources in Human Body

인체 내부 소스에 의한 전파 특성

  • Kim Bo-Mi (Department of Radio Sciences and Engineering, Korea University) ;
  • Kim Young-Sik (Department of Radio Sciences and Engineering, Korea University) ;
  • Kim Se-Yun (Imaging Media Research Center, Korea Institute of Science and Technology)
  • Published : 2006.03.01

Abstract

This paper presents the propagation characteristics from ingested sources in human body using the human model simulator. The simulator applies the FDTD method to the human data consisting of the human CAD and tissue data. After the accuracy of the simulator is verified, the received fields at one horizontal layer including the small intestine among the digestive organs are calculated in case that the electric field source is implanted in the center of the small intestine. The human propagation characteristics are illustrated by calculating the path loss per unit length according to various received positions from the simulated results.

본 논문에서는 인체 모델 시뮬레이터를 이용해 인체 내부에 소스를 인가한 경우에 대한 전파 특성을 제시하였다. 시뮬레이터는 인체 캐드 및 조직 데이터로 구성된 인체 자료에 FDTD 기법을 적용하였다. 시뮬레이터에 대한 정확성을 검증한 후, 전계 소스가 소장 중앙에 인가된 경우에서 소화관 중 소장을 포함하는 수평층의 수신파를 계산하였다. 시뮬레이션 결과로부터 다양한 수신 지점에 대해 단위 길이 당 경로 손실을 구함으로써 인체전파 특성을 보였다.

Keywords

References

  1. W. G. Scanlon, J. B. Burns, 'Radiowave propagation from a tissue implanted source at 418 MHz and 916.5 MHz', IEEE Trans. Biomed. Eng., vol. 47, no. 4, pp. 527-534, Apr. 2000 https://doi.org/10.1109/10.828152
  2. J. H. Kim, Y. Rahmat Samii, 'Implanted antennas inside a human body: Simulations, designs, and characterizations', IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, pp. 1934-1943, Aug. 2004 https://doi.org/10.1109/TMTT.2004.832018
  3. L. C. Chirwa, P. A. Hammond, S. Roy, and D. R. S. Cumming, 'Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz', IEEE Trans. Biomed. Eng., vol. 50, no. 4, pp. 484-492, Apr. 2003 https://doi.org/10.1109/TBME.2003.809474
  4. Y. Prakash, S. Lalwani, S. K. S. Gupta, E. Elsharawy, and L. Schwiebert, 'Towards a propagation model for wireless biomedical applications', IEEE International Conference on Communication, vol. 3, pp. 1993-1997, May 2003
  5. Sang Wook Kim, Se Yun Kim, 'FDTD simulation of human body for wireless capsule type endoscope', ITCCSCC 2005 International Technical Conference, vol. 3, poster 5-14, p. 851, Jul. 2005
  6. C. Gabriel, S. Gabriel, 'Compilation of the dielectric of body tissues at RF and microwave frequencies', Armstrong Lab., http://www.brooks.af.mil/AFRL/HED/hedr/reports/dieletric/home.html
  7. J. W. Schuster, R. J. Luebbers, 'An FDTD algorithm for transient propagation in biological tissue with a Cole Cole dispersion relation', IEEE Trans. Antennas and Propagation Society International Symposium, vol. 4, pp. 1988-1991, Jun. 1998
  8. O. P. Gandhi, B. Q. Gao, and J. Y. Chen, 'A frequency dependent finite difference time domain formulation for general dispersive media', IEEE Trans. Microwave Theory Tech., vol. 41, no. 4, pp. 658-665, Apr. 1993 https://doi.org/10.1109/22.231661
  9. J. P Berenger, 'A perfectly matched layer for the absorbing electromagnetic waves', J. Comput. Phy., vol. 114, pp. 185-200, Aug. 1994 https://doi.org/10.1006/jcph.1994.1159
  10. J. D. Parsons, The Mobile Radio Propagation Channel, John Wiley & Sons, 1992