• Title/Summary/Keyword: Radiative heat transfer

Search Result 247, Processing Time 0.03 seconds

Numerical Study of Metal Particle Behaviors and Flow Characteristics in Flame Spray Process (화염 스프레이 공정에서 미세 금속 입자의 거동 및 유동 특성에 대한 수치해석 연구)

  • Shin, Dong-Hwan;Lee, Jae-Bin;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • The present study conducted computational simulation for multiphase flow in the flame spray coating process with commercially available Ni-Cr powders. The flows in a flame spray gun is characterized by very complex phenomena including combustion, turbulent flows, and convective and radiative heat transfer. In this study, we used a commercial computational fluid dynamics (CFD) code of Fluent (ver. 6.3.26) to predict gas dynamics involving combustion, gas and particle temperature distributions, and multi-dimensional particle trajectories with the use of the discrete phase model (DPM). We also examined the effect of particle size on the flame spray process. It was found that particle velocity and gas temperature decreased rapidly in the radial direction, and they were substantially affected by the particle size.

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

A Hybrid Spatial Differencing Scheme for Discrete Ordinates Method in 2D Rectangular Enclosures (2차원 사각 밀폐 공간에서의 구분 종좌표법을 위한 하이브리드 공간 차분법)

  • Kim, Il-Kyoung;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.104-113
    • /
    • 1999
  • A hybrid spatial differencing scheme for the discrete ordinates method is proposed to predict radiative heat transfer in two-dimensional rectangular enclosures. Since this scheme takes the advantages of the diamond scheme and step scheme and includes the characteristics of medium, more accurate and stable results can be obtained. In its development several spatial differencing schemes are examined to address the effect of numerical smearing (or false scattering). Predictions from the proposed hybrid scheme are compared to those of other schemes for transparent, purely absorbing, purely scattering, or absorbing-emitting-isotropically scattering media. It is found that the proposed scheme predicts stable and less smeared results than others.

Influence of Pyrolyzing Fuel Disposition on Combustion Phenomena in a Cylindrical Enclosure (원형공간내 열분해 연료의 공간배치가 연소현상에 미치는 영향)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.680-685
    • /
    • 2000
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Numerical studies have been performed over overheat ratio, and vertical fuel eccentricity. The location of flame onset is affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

  • PDF

Investigation of the Angular Derivative Term for the Analysis of Axisymmetric Thermal Radiation (축대칭 열복사 해석을 위한 방향 미분항의 고찰)

  • Kim, Man-Young;Baek, Seung-Wook;Kim, Ki-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.620-627
    • /
    • 2003
  • Radiative heat transfer in an axisymmetric enclosure with absorbing, emitting, and scattering medium is studied here by using the different methods such as MDOM, FVM, and FVM2 with emphasis on the treatment of angular derivative term, which appears in a curvilinear coordinates due to angular redistribution. After final discretization equation for FVM2 is introduced by using the step scheme and directional weights, present approach is validated by applying it to three different benchmarking problems with absorbing, emitting, and scattering medium.

Design Optimization of an Extruded-type Cooling Structure for Reducing the Weight of LED Streetlights (LED 가로등용 압출형 방열 구조물 경량화를 위한 최적 설계)

  • Park, Seung-Jae;Lee, Tae-Hee;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.394-401
    • /
    • 2016
  • The configuration of an extruded-type cooling structure was optimized for the light-emitting diode (LED) streetlights that have recently replaced convectional metal halide streetlights for energy saving. Natural convection and radiative heat transfer over the cooling structure were simulated using a numerical model with experimental verification. An improved cooling structure type was suggested to overcome the previous performance degeneration, as confirmed by analyzing the thermal flow around the existing cooling structure. A parameter study of the cooling structure geometries was also conducted and, based on the numerical results, the configuration was optimized to reduce the weight of the cooling structure. Consequently, the mass of the cooling structure was reduced by 60%, while the thermal performance was improved by 10%.

Analysis of Boltzmann transport equation with Finite Volume Method at Spherical coordinate (유한체적법을 통한 구면 좌표계에서의 볼츠만 수송방정식의 해석)

  • Oh, Hyuck-Keun;Jin, Jae-Sik;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1800-1805
    • /
    • 2008
  • A "finite volume method" is proposed to predict heat transport in a spherical enclosure at micro/nanoscale with the Boltzmann transport equation (BTE). The gray version of the BTE with the relaxation time approximation has been applied. Pointing out similarity between radiative transfer equation (RTE) and BTE, the mapping process in RTE is adopted to treat the angular derivative term and linear algebraic discretization equation is derived by using the established method which is used in 2-D BTE in cartesian coordinates. The simulation results are compared to exact solution to RTE for various acoustic thicknesses and ratio of radii. The comparison shows that this method is logical and accurate, and it is possible to easily adopt various models in spherical BTE.

  • PDF

Experimental and Numerical Investigation for NOx Reduction with Fuel Lean Reburning System (NOx저감을 위한 연료희박 재연소 기법의 실험 및 수치적 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Son, Hee;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.18-25
    • /
    • 2009
  • Fuel lean reburning method is very attractive way in comparison with conventional reburning method for reducing NOX. Meanwhile, the knowledge of the how flue gas re-circulated, temperature distribution and species concentration is crucial for the design and operation of an effective fuel lean reburning system. For this reason, numerical analysis of fuel lean reburning system is a very important and challenge task. In this work, the effect of fuel lean reburn system on NOX reduction has been experimentally and numerically conducted. Experimental study has been conducted with a 15kW lab scale furnace. Liquefied Petroleum Gas is used as main fuel and reburn fuel. To carry out numerical study, the finite-volume based commercial computational fluid dynamics (CFD) code FLUENT6.3 was used to simulate the reacting flow in a given laboratory furnace. Steady state, three dimensional analysis performed for turbulent reactive flow and radiative heat transfer in the furnace.

  • PDF

Investigation on fluid-particle velocity double correlation in fluid- particle two-phase turbulent flows (유체에 입자가 부상된 2상난류운동에서 유체-입자속도 2차상관관계에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1438-1449
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.

Drying Characteristics of Red Peppers by Infrared Heating (원적외선 가열에 의한 고추의 건조특성)

  • Bae, Nae Kyung;Lee, Jong Bung;Sang, Hie Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 5~50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of red peppers. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the red peppers. Energy for moisture evaporation is supplied by the infrared radiant energy. The equations were validated with experimental data on surface temperature and average moisture content of red peppers. Average deviations of predicted surface red peppers temperature and average red peppers moisture from experimental data were 323~353K and 50~80%, respectively. The spectral extinction coefficients in the wavelength range $1.5<{\lambda}<27$ micrometer at 293K for Red Peppers were determined from results of reflection measurements and the four flux radiative heat transfer calculation. The radiation extinction coefficients were obtained from effective drying factor the temperature 373K.

  • PDF